TOWARDS A COMPLEXITY THEORY OF
SYNCHRONOUS PARALLEL COMPUTATION

Autor(en): Cook, Stephen A.

Objekttyp: Article

Zeitschrift: L'Enseignement Mathématique

Band (Jahr): 27 (1981)

Heft 1-2: L'ENSEIGNEMENT MATHEMATIQUE

PDF erstellt am: 27.04.2024

Persistenter Link: https://doi.org/10.5169/seals-51742

Nutzungsbedingungen

Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an
den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern.

Die auf der Plattform e-periodica vero6ffentlichten Dokumente stehen fir nicht-kommerzielle Zwecke in
Lehre und Forschung sowie fiir die private Nutzung frei zur Verfiigung. Einzelne Dateien oder
Ausdrucke aus diesem Angebot kbnnen zusammen mit diesen Nutzungsbedingungen und den
korrekten Herkunftsbezeichnungen weitergegeben werden.

Das Veroffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung
der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots
auf anderen Servern bedarf ebenfalls des schriftlichen Einverstandnisses der Rechteinhaber.

Haftungsausschluss

Alle Angaben erfolgen ohne Gewabhr fir Vollstandigkeit oder Richtigkeit. Es wird keine Haftung
Ubernommen fiir Schaden durch die Verwendung von Informationen aus diesem Online-Angebot oder
durch das Fehlen von Informationen. Dies gilt auch fur Inhalte Dritter, die tUber dieses Angebot
zuganglich sind.

Ein Dienst der ETH-Bibliothek
ETH Zirich, Ramistrasse 101, 8092 Zirich, Schweiz, www.library.ethz.ch

http://www.e-periodica.ch

https://doi.org/10.5169/seals-51742

TOWARDS A COMPLEXITY THEORY
OF SYNCHRONOUS PARALLEL COMPUTATION

by Stephen A. Cook 1)

ABsTRACT. This is largely an expository paper on the general theory of
synchronous parallel computation. The models of parallel computers
discussed include uniform circuit families, alternating Turing machines,
conglomerates, vector machines, and parallel random access machines.
A classification of these models indicates the need for still more; so “aggre-
gates” and “hardware modification machines” are introduced. The re-
sources sequential time, space, parallel time, circuit size and depth,
hardware size etc., are discussed and interrelated. Work in progress at
Toronto is mentioned and basic open questions are listed.

1. INTRODUCTION

There is now a well developed computational complexity theory of
sequential computation. The precisely “right” computer model is not
completely clear, but the main contenders for this model do not differ
markedly from each other in their computing efficiency. These contenders
are multitape Turing machines, possibly with storage structures more
general than linear tapes, and various versions of random access machines.
Of these models, the storage modification machine (SMM) made popular
by Schonhage [S2] carries the most conviction as a stable and general model
of a sequential computer; where we take sequential to mean the number of
active elements is bounded in time.

To be sure, there is a feeling that one step of an SMM may be a little
too powerful. It is hard to imagine a mechanism for reconnecting a given
edge out of a node v, in the storage structure to a node v, in one step, when
the candidates for v, from the perspective of the whole computation are
unlimited. But the fact remains that if we restrict ourselves to fixed storage

.1) Presented at the Symposium iiber Logik und Algorithmik in honour of Ernst SPECKER,
Zirich, February 1980.

'_»

100 S. A. COOK

structures, there is no single structure or class of structures which seems
to be just right. (Certainly multitape Turing machines are too restrictive.)
On the other hand, for random access machine models one is never quite
sure which set of operations should be primitive, and whether to charge
more than one time unit for an operation capable of manipulating arbi-
trarily large integers.

Whatever the sequential model, it is clear that the main resources of
interest are time and space. Let me repeat that the differences among the
leading models in the time and space needed to execute algorithms are
minor. And the theory of sequential time and space complexity is a rich
and interesting one.

In the past few years it has become increasingly clear that the most
powerful computers of the future will not be sequential but parallel. An
entire processor can now be placed on a VLSI chip that is so small and
cheap that it is not hard to imagine a machine of the future consisting of
millions of such processors connected together and operating synchronously.
The questions then become: How should the machine be organized and
what can be done with the result? Hence the need for a theory of parallel
computation. (A second motivation, of course, is that the human brain
appears to be a parallel computer.)

I should point out here that the theory I have in mind deals only with
synchronous computers. There is indeed a great and interesting literature
on asynchronous processes, and the theory has applications when the pro-
cesses in question cannot easily be synchronized (such as distributed
computer systems or operating systems). The theory discussed here assumes
one parallel computer whose elements have been designed from scratch
to operate synchronously.

The first problem in this theory is to find the right mathematical model
of a parallel computer. The parallel models in the literature fall roughly
into two classes: those with fixed structure and those with modifiable
structure. The fixed structure parallel models correspond to sequential
machines with fixed storage structure, namely Turing machines with
“tapes” which may be more general than linear arrays, but cannot be
modified. The parallel analogs of these include Borodin’s uniform circuit
families [B1], Goldschlager’s conglomerates [Gl], [G2], and Hoover’s
uniform infinite circuits [HI].

The modifiable sequential machines include SMM’s and random access
machines (RAM’s). (Indirect addressing in a RAM gives the effect of a
modifiable storage structure, and in fact RAM’s which can only add and

EEEE——————— |
SYNCHRONOUS PARALLEL COMPUTATION 101

subtract one are equivalent to SMM’s [S2].) The modifiable parallel
machines include various parallel RAM’s, such as SIMDAG’s [G1] and
' P-RAM’s [SS] and [FW], as well as vector machines as defined in [PS]. As
' yet no parallel analog of SMM’s has appeared, but a tentative candidate
is introduced in section 3.

Fortunately, all these models are roughly equivalent from the point
of view of computation time, in the sense that each can simulate another
while at most cubing the computation time. In fact, the sets or functions
- computed by each in time SOV (i.e. time polynomial in S: this notation
appears in [P1]) are the same as those computed by a Turing machine in
space SOV for any well behaved time bound S. (This phenomenon was
observed, for example, in [CS], and called the “parallel computation
thesis” in [G1].)

This thesis can be made more specific as follows: For the fixed structure
parallel machines; namely, uniform circuit families, conglomerates, “aggre-
gates” (see section 4) and uniform infinite circuits (see [H1]),

(1.1) parallel time (S) € DSPACE (S) € NSPACE (S) < parallel time
(%)

(See [HU] for the meaning of DSPACE and NSPACE.)

On the other hand, the modifiable parallel machines tend to be more

powerful, and the inclusions become (at least for SIMDAG’s and the
- P-RAM’s of [FW]):

(1.2) parallel time (S) = DSPACE (S?) < parallel time (S?).

- (For SIMDAG?s, the stronger statement NSPACE (S) < parallel time (S)

~ also holds [G1]).

| The modifiable parallel models that have been proposed so far all share

- the same problem as the sequential RAM models: The choice of primitive

- operations seems arbitrary, and most of these operations (such as shifts
in vector machines and random access to global storage in P-RAM’s) seem
too powerful to be primitive. Hence I propose a new modifiable parallel
model: “Hardware Modification Machines” (HMM’s), to be the parallel
analog of SMM’s. These are discussed in section 5.

Time and space are the fundamental resources in sequential complexity
theory. What are their analogs in the parallel theory? Obviously, parallel
time plays a fundamental role. The second important parallel resource,
I think, should be hardware size; that is, the number of elements of a
machine which are active during a computation. For conglomerates, hard-

-~ S

102 S. A. COOK

ware size is the number of active finite state machines, and for vector
machines it is the sum of the lengths of the vectors. For SIMDAG’s and
P-RAM’s it corresponds roughly to the number of processors, although it
should take into account the total memory used. For circuits, the circuit
size 1s an upper bound on hardware size, but the traditional restriction that
circuits are acyclic disallows elements to be reused during a computation
and hence may give an unrealistically large value for size. Hence “aggre-
gates” are introduced in section 4. These can be thought of either as circuits
with cycles, or as finite conglomerates.

Section 2 discusses two fundamental fixed structure parallel models;
namely, uniform circuit families and alternating Turing machines. These
turn out to be nearly equivalent. Section 3 gives examples which are log
depth complete for deterministic log space, and hence may distinguish
between two similar classes: deterministic log space and uniform log
circuit depth. Section 4 discusses two fixed structure models useful for
considering hardware size as well as parallel time; namely, conglomerates
and aggregates. Section 5 introduces hardware modification machines, and .
section 6 surveys other modifiable parallel models, such as vector machines
and parallel RAM’s. Section 7 discusses characterizations and inter-
relationships between two complexity classes defined by simultaneous
resource bounds; namely, NC and SC Finally, section 8 lists some open
problems.

2. CIRCUITS AND ALTERNATING TURING MACHINES

Perhaps the simplest model for measuring the parallel time to compute a
function is the combinational circuit (or simply a circuit). (See [S3] and
[P2] for general discussions of circuits.)

Notation. B, = {f l {0, 1}" - {0, 1}} = the set of all Boolean functions
of rank n.

Definition. A circuit o« with n inputs is a finite directed acyclic graph
such that each node has a label from {xl, vens xn} U By U B; U B,. A node
labelled x; must have indegree zero, and is called an input node. A node v
with label g € B; must have indegree 7, and one edge into v is associated
with each argument of g. Certain nodes are designated output nodes. When
the variables x; are assigned values from {O, 1} every node v assumes a
unique value in {0, 1}, so that v computes some function f, of x, ..., X,.
We say the circuit o« computes f if f = f, for some output node v.

SYNCHRONOUS PARALLEL COMPUTATION 103

We shall assume that every node v has a path from v to some output.
That is, we assume there are no syntactically superfluous nodes.

Let ¢ () (the complexity of «) be the number of gates (i.e. nodes other
than inputs) in «, and let d («) (depth of «) be the length of the longest
path in o. If feB, then ¢(f) = min {c(®) |« computes f} and
d(f) = min {d () | o computes f}.

If 4 = {0, 1}%, then A" = 4 n {0, 1}". We can regard A" as a member
of B, by the convention A" (xi, ..., x,) = 1 iff (x;...x,) €e4". A family {ocn}
of circuits computes A iff «, computes A" for all n, and each «, has a unique
output node.

Notation. Let S, T : N¥ — R. Then

SIZE(T) = {A|3 {«,} : {«,} computes A and ¢ (¢,) = O (T (n)}
DEPTH (S) = {A |3 {«,} : {,} computes A and d (%,) = O (S (n)}

We shall always assume T (n) >>n and S (n) > log n.

These complexity classes are strange in that they include nonrecursive
sets A. In fact, by Lupanov’s result (see [S3]) SIZE (2*/n) = 21" and
by disjunctive normal form DEPTH (n) = 2% 1", Nevertheless they are
mathematically interesting, and have intuitive significance especially for
lower bound results. In particular, a proof that A ¢ DEPTH (S) means
that no parallel computer with fixed circuitry could compute A in time
O (S). This 1s because the parallel computation could be unwound to form
a circuit with constant delay at each gate. Our assumption that circuits
have bounded fan-in (in fact fan-in two) is justified by engineering experience
that any general design for a gate with »n inputs has a delay at least pro-
portional to log n. On the other hand, Hoover [H1] gives results that show
that an assumption of fan-our two would not materially alter either the
depth or the size complexity of a set A.

Although the circuit depth to compute A is a reasonable lower bound
on the parallel time required, it is not a reasonable upper bound in general
(unless we want parallel machines to compute nonrecursive sets). Borodin
[B1] proposed making it reasonable by requiring that the family {ocn}
computing A be uniform in some sense. The trouble is there is no clearly
correct choice for the definition of uniform. (See Ruzzo [R1] for a discussion
of various possibilities.) Here we shall adopt the following definition, which
has gained some acceptance (see [C1], [R1], and [P1]):

Definition. A family {oc,,} of circuits is uniform provided some deter-
ministic Turing machine can compute the transformation 1" — &, in space

104 S. A. COOK

0] (logc(oc,,)). (Here &, is a binary string coding the circuit «, in some
reasonable fashion.)
We can now define the uniform complexity classes

USIZE (T) = {A |3 uniform {0} : {«,} computes A and ¢ (a,)
= O (T ()}

UDEPTH (S) = {A |3 uniform {a,} : {«,} computes A and d (a,)
=0 (S (n))}

Notice that the size ¢ («,) is not mentioned in the definition of UDEPTH
so it can be taken to be as large as possible consistent with d («,). In fact,
every circuit of depth 4 with a unique output can be expanded into an
equivalent tree circuit of size 2¢ — 1. Also, our assumption of no superfluous
nodes implies that no unique-output circuit of depth d can have more than
24 — 1 nodes. This leads to the following

PrOPOSITION 2.1. The class UDEPTH (S) remains unchanged if the
definition of uniform family {oc,,} is changed to require that the transformation
1" > &, be computable in deterministic space O (d («,)) instead of
O (log (¢ ())).

The alternative definition of uniform is in fact the one given by Borodin
[B1].

Borodin expresses the general thesis in [B1] that circuit size corresponds
to Turing machine time and circuit depth corresponds to Turing machine
space. (If we identify uniform circuit depth with parallel time, then the
second assertion is an instance of the parallel computation thesis stated in
section 1.) One precise statement of Borodin’s thesis is the following:

THEOREM 2.1. If [log T] is fully space constructable, then
USIZE (T°)) = DTIME (T°) .
If S is fully space constructable, then
UDEPTH (S°¥) = DSPACE (8°V) .

(See [HU] for the definitions of constructable, DTIME and DSPACE.
We have altered the definitions of the latter so they contain only subsets
of {0, 1}*.)

The first equation is easy in this crude form, and in fact can be made
considerably more precise (see [P1]).

SYNCHRONOUS PARALLEL COMPUTATION 105

The second equation is a consequence of the following result of Borodin
[B1], which states that the inclusions (1.1) hold for uniform circuit depth.

TueOREM 2.2. If S is fully space constructable, then

UDEPTH (S) € DSPACE (S), and
NSPACE < UDEPTH (S?).
COROLLARY (Savitch’s Theorem). If S is fully space constructable,
then NSPACE (S) = DSPACE (S?).

Let us sketch the proof of theorem 2.2. The circuit value problem (see
[HU])) is the set of all binary strings encoding systems {xy, ..., X,; &> where

~each x; e {0, 1} and o is a circuit whose unique output is 1 when its z inputs
- take on the values xy, ..., X,

LeMMA 2.1. There is a deterministic Turing machine M which recognizes
the circuit value problem, and on an input encoding {xi, ..., X,; &y, M uses

space O (d (2)).

The idea is to perform a depth first search of o from the output
node taking left descendants first. M stores the number of the node v
currently examined, together with one symbol for each node on the path
followed from the root to v. This symbol is either a marker L, if the search
is proceeding on through the left input of the node; or the value of the left
input if this value has been determined and the search is proceeding on to
the right.

The first inclusion of Theorem 2.2 follows from Lemma 2.1 and Pro-
position 2.1.

To prove the second inclusion, recall that the graph reachability problem
(GRP) (see [HU]J) is the set of all binary strings encoding the adjacency
matrix of a digraph G on nodes {1, 2, ... N} such that G has a path from
node 1 to node N.

LemMMA 2.2. GRP e UDEPTH (log? n).

The proof involves constructing a circuit which computes the transitive
closure of a Boolean matrix by repeated squaring. The circuit has O (log #)
stages, and each stage has depth O (log n) and computes the Boolean square
of the matrix resulting from the previous stage. The circuit can be con-
structed by a deterministic Turing machine in space O (log »).

Given a nondeterministic S space bounded Turing machine M and the
input length n, a circuit «, is constructed which does the following on an

106 S. A. COOK

input string w of length n. «, first computes the adjacency matrix A of the
graph whose nodes are the possible configurations of M with an input of
length n, and whose edges represent possible steps in a computation with
input w. We can assume M has an initial configuration labelled 1 and a
unique accepting configuration labelled N. «, now solves the graph
reachability problem for A according to Lemma 2.2. The solution to the
problem is positive iff M accepts w. Using Lemma 2.2 it is not hard to see
that o, has depth O (S?) and can be constructed in deterministic space
O (S?) (in fact, space O (S)).

Theorem 2.1 represents one way to make precise Borodin’s thesis that
size corresponds to time and depth to space. Alternatively, instead of
making the circuit family {oc,,} uniform one can make Turing machines
nonuniform (see [S1]). We borrow from Pippenger’s terminology [P1].
Suppose g : {0, 1}* — {0, 1}*. We say that a (deterministic or non-
deterministic) multitape Turing machine accepts A modulo g provided
that M accepts A under the condition that in addition to the normal input
X € {0, 1}* on a read only input tape M is also provided with g (x) on a
separate read only tape called the reference tape. The space used by M is
the work tape space plus [log Ig (%) I 1, where l w | is the length of w. (The
term [log Ig (x) l] was not counted in [Pl], but it should be, since it rep-
resents the amount of information stored by the position of the head on the
reference tape.) The function g is length determined if g (x) depends only
on Ix], and not otherwise on x. A nonuniform machine is a machine M
together with a length determined function g. It accepts A provided it
accepts A modulo g. We add (NONUNIFORM) after a complexity class
to indicate the machines are allowed to be nonuniform.

There is an alternative and more elegant definition of nonuniform space.
We say that A is in DSPACE (S) (NONUNIFORM) provided there is a
family {Fn} of finite automata, each with a two-way read only input tape,
such that F, recognizes A", and log | F, | = O (S (n)), where IF,, is the
number of states of F,. It is not hard to verify that this definition is
equivalent to the one in the previous paragraph (recall our convention
that S (n) > log n).

The above definition does not work for time. However, Les Valiant
pointed out that we could change the definition of nonuniform Turing
machine to be a family {Mn} of Turing machines instead of a single Turing
machine with a reference tape. The time complexity T (#) of such a family
would be the maximum of | M, | and the worst case running time of M,
on inputs of length n. The space complexity S () would be log] M, | plus

SYNCHRONOUS PARALLEL COMPUTATION 107

the worst case space used by M, on inputs of length #. This gives the same
definition of nonuniform space as before, but the nonuniform time is only
the same up to application of a polynomial.

In any case, theorems 2.1 and 2.2 have the following analogs for non-
uniform machines:

THEOREM 2.3.

SIZE (T°) = DTIME (T°") (NONUNIFORM), and
DEPTH (S°V) = DSPACE (S°") (NONUNIFORM).

THEOREM 2.4.

DEPTH (S) = DSPACE (S) (NONUNIFORM), and
NSPACE (S) (NONUNIFORM) < DEPTH (S2).

To prove these results, the nonuniform machines simulate the circuits
by letting g (x) provide a description of the circuit for inputs of length | X]
Conversely, a circuit family {an} can simulate a nonuniform machine by
building into «, the value of g (x) for [X l = n.

Note that the following nonuniform version of Savitch’s theorem is a
consequence of Theorem 2.4:

COROLLARY.
NSPACE (S) (NONUNIFORM) = DSPACE (Sz) (NONUNIFORM).

In other words, a 2%-state 2NFA can be simulated by a 2°¢")-state
2DFA for inputs of length n < 2°.

A second interesting model of parallel computation, which falls in the
fixed structure category, is the alternating Turing machine (ATM) ([CS],
[K1], [CKS]). An ATM is a generalization of a nondeterministic multitape
Turing machine. A nondeterministic machine has existential states, for
which there are several possible next states, and at least one of the alternatives
must lead eventually to an accepting state. In addition to existential states,
an ATM also has universal states, for which a/l of the possible next states
must lead to an accepting state. We define the accepting state to be a
universal state with no successors. Every state is either universal or existen-
tial. Thus an accepting computation of an ATM M with input w is a finite
tree whose nodes are labelled with configurations of M, such that i) every
universal node (i.e. node whose configuration has a universal state) must

. have all possible next configurations as children, ii) every existential node
I§_>

108 S. A. COOK

must have at least one possible next configuration as a child, and iii) the
root 1s the initial configuration. In order for M to operate in sublinear time
we assume it has “random access” to the bits of w instead of a read only
input tape. That is, M has a special index tape, and when M writes an
index i on the index tape and assumes one of a distinguished set of index
states, the i-th symbol of the input w is placed on the index tape. We say
M accepts w in time s and space [if there is an accepting computation of M
with input w whose longest path from root to leaf is s or less, and such that
no configuration in the computation has tapes of length exceeding /. The
complexity classes for time and space for ATM’s are designated ATIME (S)
and ASPACE (L), respectively, and we always assume S (n), L (n) > log n.

As different as ATM’s may seem from uniform circuit families, there is a
remarkably close correspondence between alternating time and circuit
depth, and between alternating space and circuit size. Unfortunately, our
definition of uniform for circuits is too weak to express the correspondence
precisely. Ruzzo gives a number of alternative definitions, of which the
strongest is the following: {oc,,} is Ug uniform iff the connection language -
Lgc can be recognized by a deterministic Turing machine in time
O (log ¢ (2,)). Here Lg consists of those quadruples (n, g, p, x) such that
if g° is the gate reached by following the path pe {L, R}" (where
| p l < log ¢ (=,)) in circuit o, back from gate g (L, R refer to left and right
input, respectively) then g’ has label x if xe B,, and g’ = x otherwise.
(Assume 7, g and x are expressed in binary notation.)

If we use the notation, for example, U;DEPTH (S) to indicate this
notion of uniformity, then we have

ATIME (S) = U.DEPTH (S), and
ASPACE (L) = UGSIZE (2°M),

assuming S (n) can be computed in deterministic time S (n), and L (#) can
be computed in deterministic time L (#) given 7 in binary notation. In fact,
Ruzzo [R1] proves the stronger result that the equivalences hold simul-
taneously. Let us use the notation ATIME-SPACE (S, L) for the class of
sets accepted simultaneously in time S and space L on an ATM, (note that
this may be a proper subset of the intersection of ATIME (S) and
ASPACE (L)), and analogous notation for other simultaneous classes.
Then '

THEOREM 2.5. ATIME-SPACE (S, L) = UgDEPTH-SIZE (S, 2°1),
provided S and L are computable in deterministic time O (S).

SYNCHRONOUS PARALLEL COMPUTATION 109

Ruzzo shows the above result still holds when Uy is replaced by U,
provided S > L.

From their definition, ATM’s appear to model a restricted form of
parallel computation, because the “processors” in the model are restricted
to be Turing machines, and they must be organized in the form of an
and-or-tree. This makes Theorem 2.5 all the more interesting. On the other
hand, ATM’s are more pleasing in one way than circuit families, because
there is no question of how to define uniform. Each ATM is automatically
uniform. In fact, ATM’s may be the best candidate proposed so far for
defining parallel time, at least in the fixed structure category. But this
remains to be seen. The one clear drawback of ATM’s is that they do not
seem to have any resource that corresponds to hardware size (see section 4).

3. LoG DeptH vS LOG SPACE

As far as we know, the second inclusions in Theorems 2.2 and 2.4
cannot be improved, even when NSPACE is replaced by DSPACE. (Of
course an improvement for NSPACE would improve Savitch’s theorem.)
Taking S (n) = log n as the most basic case, it is interesting to look for
examples of sets in DSPACE (logn) which do not appear to be in
DEPTH (log n). Addition of n n-digit binary numbers, and multiplication
of two n-digit binary numbers both can be done in O (log ») circuit depth
(see [S3]), as can sorting #n n-digit binary numbers (see [MP]). On the other
hand, the “cycle free problem” is in DSPACE (log n) but does not appear
to be in DEPTH (log »).

Definition. The cycle free problem (CFP) is the set of all binary codes
for symmetric Boolean N X N adjacency matrices A of undirected cycle-
free graphs. .

One can define functions f': {0, 1}* — {0, 1}* computable in depth S
(or uniform depth S) using circuits with several outputs. We say A, is
log depth reducible to A, (respectively uniformly log depth reducible) iff
there is some function f computable in depth O (log n) (respectively uni-
form depth O (log n)) such that we A, iff f(w) € A,, for all w. We say A
18 log depth complete for the class & iff Ae &, and every A’ e & is log
depth reducible to A. The uniform case is defined similarly. The main
ideas in the proof of the following result appear in Hong [H2].

110 S. A. COOK

THEOREM 3.1. (a) CFP is uniformly log depth complete for
DSPACE (log n).

(b) CFP is log depth complete for DSPACE (log n)
(NONUNIFORM).

CoroLLARY (a) DSPACE (logn) = UDEPTH (log n) iff
CFP € UDEPTH (log n).

(b) DSPACE (log n) (NONUNIFORM)
= DEPTH (log n) iff CFP € DEPTH (log n).

We note that because UDEPTH (log n) € DEPTH (log #n), the first
equation in the Corollary implies the second. This fact does not seem to
be obvious without using the CFP.

To prove CFP e DSPACE (logn), Hong devised an algorithm for
moving several pebbles around the input graph in an attempt to do a depth
first search of each of its components. To prove that every

A € DSPACE (log n)

is uniformly log depth reducible to CFP, one can, given an input w, define
a graph whose nodes are ¢ X {O, 1, ..., T}, where @ is the set of possible
configurations of the Turing machine M with input w, where M accepts the
complement of A in space O (logn), and T is an upper bound on the
computation time. Two nodes (c, ¢) and ¢’, ¢’) are adjacent iff either ¢ — ¢’
inonestepand ¢’ = ¢+ l,or ¢’ > cand ¢t = ¢t + 1. If we let ¢, be the
initial configuration and ¢, be the unique accepting configuration, then we
also add an edge between (cy, 0) and (c;, T). Using the fact that M is
deterministic, it is not hard to see that M accepts w iff the graph has a cycle. |

A second example for which theorem 3.1 applies is GAP1: the graph
reachability problem for directed graphs of outdegree one. The completeness
of GAP1 for DSPACE (logn) is proved for reducibilities other than log
depth in [J] and in [HIM]. The proof of theorem 3.1 for GAPI is easier
than for CFP.

The following example is interesting, because it is complete for non-
uniform log n space, but no one knows how to solve it in uniform log n
space.

Definition. The undirected graph reachability problem (URP) is the
set of codes of symmetric adjacency matrices of graphs with nodes
{1,2, ..., N} with a path from node 1 to node N.

SYNCHRONOUS PARALLEL COMPUTATION 111

TuEOREM 3.2. URP is log depth complete for DSPACE (logn)
(NONUNIFORM).

That URP € DSPACE (logn) (NONUNIFORM) follows from the
existence of a short universal covering string for all n-node undirected
connected oriented graphs of fixed degree (see [AKLLR]). The reducibility
proof is similar to the above argument.

Many interesting problems have O (log? n) as the best known upper
bound for both deterministic space and uniform depth. It is interesting to
try to reduce these to each other via log depth or uniform log depth re-
ducibility, so as to cut down the number of equivalence classes of problems
classified by their depth complexity. For example, the directed graph
reachability problem (GRP) is well known to be log space complete for
NSPACE (log n) (see [HU]). In fact, it is also uniform log depth complete

~ for NSPACE (log n). Two other examples are finding the integer part of
the quotient of two n-digit binary numbers, and raising an n-digit number
to the power n. The best known upper bound for both problems for both
space and depth is O (log? n). Hoover [H1] shows that each is log depth
reducible to the other, although one of the reductions is not uniform. As
a matter of interest, Hoover also points out that the base conversion problem
(say converting binary notation to ternary) is in nonuniform depth
- O (logn) (because the powers of two in ternary can be built in), but the
- best space upper bound and uniform depth upper bound is O (log? n).

i 4, CONGLOMERATES AND AGGREGATES

Uniform circuits and ATM’s are good models for measuring parallel
time, but neither is right for measuring the second important resource
mentioned in the introduction, namely hardware size. What is needed is to
. allow circuits to have cycles. Goldschlager’s conglomerates [G1] satisfy this
requirement. Briefly, a conglomerate is an infinite collection {MO, M., ,}
of identical deterministic finite state machines connected together in some
manner. Each machine has r >> 1 inputs and one output, and the connection
. function f specifies for some inputs of some machines the output of which
machine it is connected to. (Inputs left unconnected receive some fixed
symbol b.) Cycles are allowed in the connection graph. Initially at time O,
the first n machines My, ..., M, store the symbols of the input string
Wi Wy ... W,, and all other machines start in the initial state g,. At sub-

-~ S

112 S. A. COOK

sequent times 1, 2, ... each machine assumes a new state and transmits
output symbols in a manner determined by its input symbols and state at
the previous step. The conglomerate accepts its input if at any time
machine M, enters the special state ¢q’.

The uniformity condition for conglomerates specifies that the con-
nection function f can be computed within some space bound P on a Turing
machine, where f (i{i,...;;) = s, if machine M is reached by starting with
M, and tracing back via input i,, then input i, of that machine, and so on.
The linear space bound P (n) = n suffices in order for the inclusions (1.1)
to hold when parallel time is taken to mean conglomerate time. We have
not considered the question of which uniformity condition makes con-
glomerate time equivalent to uniform circuit depth.

Goldschlager did not define or study the “hardware size” of a con-
glomerate computation. Rather than do that now, we present a new model
(developed in Dymond [D1]) to study, called an aggregate which can be
viewed either as like a finite conglomerate, or like a circuit with feedback.
Similar objects have been called “sequential circuits” or “logical nets” in -
the switching theory literature. An aggregate has different input/output
conventions than these, and we assume every gate has unit delay to avoid
any possibility of ambiguous computations. We interpret the result as more
a “parallel circuit” than a “sequential circuit”.

More formally, an aggregate [, on inputs x4, ..., X, is a directed graph
(not necessarily acyclic) whose nodes have labels from B, U B; U B, U {x}
A node v with label g € B; must have indegree 7, and one edge into v is
associated with each argument of g. If a node v has label x, then v is an
input node and must have indegree zero. Associated with each input node v
is a register R, consisting of [log n] nodes, which specifies which input x;
is presented to x. There is a distinguished pair of nodes designated v, and
v, called output nodes. A configuration of [, is an assignment of 0 or 1 to
each node v of f8, called the output of v. A computation of f, is a sequence
Cy, C4, ... of configurations as follows.

(a) All nodes in C, have output O except any node labelled with the
constant function 1 € B,,.

(b) If v has label g € B;, then in C,;; v has output equal to g applied to
the input (s) of v in C,.
(c) If v is an input node, then v has output 0 in C, for ¢ < llog »l, and

in general in C, y,q,1 © has output x;, 1, where i is the value in binary
notation of the register R, in C,.

SYNCHRONOUS PARALLEL COMPUTATION 113

| The output of B, is defined to be the output of the node v, in the first
 configuration C, in which v, has output 1. The running time ¢ (8,) of B,
is the maximum over all inputs x4, ..., x,, of this index ¢. The hardware size
1 (B,) 1s the number of nodes in f§,.

The peculiar input conventions for aggregates need justification. The
reason that inputs x; are not fed directly into aggregates as they are for
circuits is that this would entail % (f,) > n, whereas we are interested in
sublinear hardware bounds (see theorem 4.1 below). In fact, the value of
an input node v could be computed from the index stored in R, using a
decoding circuit of size O (n) and depth O (log n) (this is the reason we
assume a delay of [log #n] for R, to affect v). Our convention of not counting
the size of the decoding circuit is similar to the convention of not counting
the input tape in measuring the space used by an off line Turing machine.
(One might imagine, for example, a large number of small aggregates
sharing the same large decoding circuits.)

Our input and output conventions could be modified slightly to allow
aggregates to compute functions instead of to recognize sets. The particular
bit computed of the function would be specified by a part of the input
called the output specifier. Then aggregates could be cascaded to compute
the composition of two functions in hardware size equal to the sum of the
hardware sizes for each of the functions. The output v, of the first aggregate
p would be connected to the input v" of ', and the register R, of ' would
be connected to the output specifier of . The timing conventions for the
input v” of f” would be changed to allow for the uncertain delay between
~an mput request and its answer (signalled by v,).

Definition. A family {8,} of aggregates is uniform provided the trans-
formation 1" — f, can be computed in deterministic space

O (log i (B,) +log n).
The complexity classes defined by uniform aggregate families of bounded

“hardware and bounded time and of nonuniform bounded time families
can be characterized as follows:

THEOREM 4.1. Let H,S be fully space constructible functions with
H®n), S(n) > log n. Then

'(a) UHARDWARE (H) = DSPACE (H),

(b)) HARDWARE (H) < DSPACE (H) (NONUNIFORM),
(c) UAGTIME (S) = UDEPTH (),

. (d) AGTIME (S) = DEPTH (S).

114 S. A. COOK

This theorem shows that neither of the resources uniform hardware
and uniform aggregate time define new complexity classes in themselves.
However, taken together they define apparently new and natural simul-

taneous complexity classes. Simultaneous resource bounds are discussed
in section 7.

Proof sketch (a) and (b): A deterministic Turing machine can simulate
an aggregate by updating a bit vector which has one bit for the output of
each gate. A queue is kept of the next [log »n] input values for each input
node v to facilitate the update of these nodes. Note that there can be at
most O (H (n)/log n) input nodes v, since each has an associated register
R, with [log n] gates.

An aggregate can simulate a (uniform) deterministic Turing machine
for inputs of length » by having a “box” of gates devoted to each work tape
square. The box records the current contents of that tape square, and if
scanned, it records the state of the Turing machine. The contents of the
input tape is obtained by an input node v, whose register R, is attached to a
counter which records the input head position. This simulation does not
work for nonuniform Turing machines, since the reference tape could have
length exponential in the size of the aggregate.

Proof sketch (c¢) and (d): An aggregate can be converted to a circuit by
implementing each input node by the decoding circuit mentioned earlier.
Then each gate v is replaced by a set {(v, 1y IO <t <SS (n)} of gates. The
gate <{v,t + 1> has inputs from {(wy,) and {w,,t>, where w; and w,
are the inputs to v in the aggregate. The circuit output is {(v,, S (n))> (we
can assume v, retains its value in the aggregate once v; = 1).

To convert a circuit to an aggregate, construct an input node v; for
each circuit input x;. The register R,. has constant value i. Let v, be the
output node for the circuit, and let v; be the end of a length S (n) chain of
identity gates having the constant function 1 at the beginning.

More details can be found in [D1].

The above theorem sheds some light on the old problem of to what
extent feedback in circuits helps reduce the number of required gates. The
best result in that direction seems to be due to Rivest [R2] who gives
examples showing a linear reduction in size, but only for a multiple output
circuit. On the other hand, theorem 4 suggests that disallowing feedback
might cause an exponential size blow up in some cases. For example, let
A be a set which is log space linear time complete for DSPACE (n) (see
Hong [H2] for a natural example). Then by equation (a), A can be recog-

SYNCHRONOUS PARALLEL COMPUTATION 115

nized by an aggregate family of linear hardware size. On the other hand, as
far as we know A requires exponential time on a Turing machine, so by
theorem 2.1 it would follow that any wniform circuit family recognizing A
has size at least 2°° for some & > O (indeed 2%¢/°¢* by [P3]). In fact, we
| know of no way to reduce this bound even if we allow nonuniform circuit
families.

Of course in other cases a proof that disallowing feedback causes
exponential size blow up would imply P # NP. For example, SATIS-
B FIABILITY can be recognized in linear space and hence is recognized by
| an aggregate family with linear hardware. If P = NP, then SATIS-
FIABILITY would be recognizable by polynomial size circuits.

We close this section with two little results about aggregates in the

B style “if horses can whistle then pigs can fly”. This style (but not these

b results) comes from the paper of Karp and Lipton [KL]. The results are
intriguing because the hypotheses consist of assumptions concerning the
¢ nonuniform complexity of classes and the conclusions assert uniform
:; complexity bounds.

TaeoreM 4.2. If P <€ HARDWARE (log ») then
P = DSPACE (logn . loglog n)

Proof sketch: Since the circuit value problem (CVP) is log space
complete for P (see [HU])), it suffices to prove CVP is in the second class
given it is in the first class. Thus for each n we assume the existence of an
| aggregate f3, which correctly solves the CVP on inputs of length n, with
} /7 (B,) = O (logn). A deterministic Turing machine M can represent and
| simulate a candidate 8, for p, in space O (logn . loglog n), and in fact M
can cycle through all such candidates B,. There is no apparent way to
determine in small space whether f, gives the correct answer for all inputs ¢
of length n, but given a particular input ¢ (i.e. circuit with inputs specified)
M can check that f, gives consistent answers for each gate g of ¢ by simu-
lating f8, three times, with ¢ as input modified so that its output is each of
the two inputs to g and g itself. If B, gives consistent answers for each gate
of ¢, then f8, correctly gives the output of ¢ (i.e. tells whether ¢ € CVP).

THEOREM 4.3. If NP = HARDWARE (log 1) then
NP = DSPACE (log n . loglog n).

116 S. A. COOK

Proof sketch: It suffices to show that SATISFIABILITY is in the
second class given it is in the first class. Reasoning as above, the Turing
machine M can check whether a candidate aggregate B, correctly tells
whether a propositional formula F is satisfiable by making f, produce a
satisfying assignment bit by bit, by plugging in partial truth assignments
to F and asking f8, about the result. The trouble is M cannot remember
the partial assignments in small space. However, the problem of whether
“the i-th bit is 1 in the lexocographically first assignment which f, says
satisfies F” is in P. Thus by theorem 4.2 this bit can be determined in
space O (logn.loglogn), and M can determine whether this assignment
satisfies F in small space.

5. HARDWARE MODIFICATION MACHINES

As mentioned in the introduction, there is a need to define a parallel
model which is more powerful than an aggregate, in that it can modify its
circuits, but less powerful than existing parallel RAM models, in that
each unit of hardware can only perform a bounded amount of work in one
step. We shall call the new machine a hardware modification machine
(HMM), since it is intended to be the parallel analog of the storage modi-
fication machine. An HMM consists of a finite collection of finite state
machines connected together as in a conglomerate. At each step, each
machine may, in addition to assuming a new state and transmitting output
signals, modify its input connections. Specifically, it may detach any of its
inputs and re-attach it to a new machine which it brings into the HMM, or
it may re-attach it to an output of any machine which can be reached by a
path of length at most two traced backwards from the input.

One advantage of an HMM over circuits, aggregates, and conglomerates
is that there is no question of uniformity. The machine is uniform because
it constructs itself.

An HMM can execute an algorithm like the one described in [FW] to
simulate a deterministic S space bounded machine in time O (S), and HMM
time S can be simulated in deterministic space O (S?). Thus the inclusions
(1.2) apply.

The theory of HMM’s is developed in [D1].

SYNCHRONOUS PARALLEL COMPUTATION 117

6. OTHER MODIFIABLE MODELS

; The first published parallel model introduced and compared in power
‘ to space bounded machines was the vector machine of Pratt and Stock-
meyer [PS]. A vector machine is like a random access machine, except there
| are two distinct kinds of registers: index registers and vector registers.
| Addition, subtraction, and comparison operations can be applied to both
kinds of registers, and both can be accessed via index registers. In addition,
bitwise Boolean operations can be applied to vector registers, and vector
| registers can be shifted by an amount specified by an index register. These
shift operations allow the vectors to grow in length exponentially in the
computation time, and hence the bitwise vector operations represent a high
degree of parallelism.

Pratt and Stockmeyer prove that vector machine time (S)
< DSPACE (S*) and NSPACE (S) < vector machine time (S?), for
suitable S (n) > log n. These inclusions are weaker than either 1.1 or 1.2.
It seems that vector machines have some very powerful operations, such
as the shift, which preclude linear space simulation of time. On the other
hand, they are apparently not powerful enough to allow a linear time
simulation of space.

This aesthetic defect is balanced by other considerations. The model
is a pleasant one, and is an extension of actual computer designs. Enough
examples of vector machine algorithms are given in [PS] to indicate the
machine’s suitability for the programming of parallel algorithms. Simon
[S4] proved the surprising result that the power of vector machines is only
increased by application of a polynomial when no distinction is made
between index registers and vector registers, so that a vector register can
be shifted by an amount specified by another vector register.

The MRAM’s and CRAM’s of Hartmanis and Simon [HS] are similar
to vector machines, except they have only one type of register, and perform
multiplication (or concatenation) instead of shifting. The time space simu-
lation results are similar to those for vector machines.

A number of other variations of parallel random access machines have
been introduced. One example is Goldschlager’s SIMDAG [Gl], which
stands for single instruction stream, multiple data stream, global memory.
This consists of a control processor (CPU) and an infinite sequence PPU 0
PPUj,, ... of parallel processors, each connected to an infinite random
access global memory. In addition, each parallel processor has a local

118 S. A. COOK

infinite random access memory. The program is executed by the CPU,
which can broadcast instructions to the active PPU’s. Each instruction
broadcast is executed by the first k£ PPU,’s, where k is stored in some
location of global memory. Each PPU, executes the same instruction, but
the memory locations accessed can be indexed by the subscript 7, and so
can be different for different PPU,’s. The simulations proved for SIM-
DAG’s are a little stronger than 1.2; namely, SIMDAGTIME (S)
< DSPACE (S?), and NSPACE (S) < SIMDAGTIME (S). The reason
that nondeterministic space S instead of just deterministic space S can be
simulated in time O (S) is apparently because of a powerful SIMDAG
instruction which allows any number of PPU’s to store into memory at
once. If two or more try to store into the same location, the lowest numbered
processor succeeds. This gives the effect of a huge fan-in being executed
in one step.

The P-RAM of Fortune and Wyllie [FW] is similar to the SIMDAG,
except different parallel processors can be executing different parts of their
program at once, so it is “multiple instruction stream”. Also, there is no
instruction comparable to the SIMDAG’s instruction which allows a
potentially unbounded number of processors to try to store in a given
location at once. Wyllie shows in [W1] that the multiple instruction stream
gives only a constant factor time advantage over SIMDAG’s. On the other
hand, the unbounded fan-in for SIMDAG’s seems to be a real advantage,
since the time space simulation results for P-RAM’s are those of 1.2;
weaker than for SIMDAG’s.

The PRAM’s of [SS] have no global memory, but a given processor
can initiate offspring processors. The time space simulation results in [SS]
are weaker than either 1.1 or 1.2.

In conclusion, all the parallel models in this section have powerful
instructions which cannot be considered primitive.

7. SIMULTANEOUS RESOURCE BOUNDS

In section 2 we indicated that sequential time 1s roughly equivalent to
uniform circuit size, and sequential space is roughly equivalent to uniform
circuit depth. A natural question to ask is whether simultaneous time and
space bounds are roughly equivalent to simultaneous uniform size and
depth bounds. To be more specific, the well known class P can be charac-
terized as either DTIME (n°") or as USIZE (n°"), and “polylog space”

SYNCHRONOUS PARALLEL COMPUTATION 119

is both DSPACE ((log ©)°") and UDEPTH ((log m)°"). If we use the
notation DTIME-SPACE (T, S) to refer to the class of sets accepted by
some deterministic Turing machine which runs both in time T and space S,
~ then the class referred to as PLOPS (polynomial time and polylog space)
in [C1] (and now called SC by agreement among several authors), can be
written DTIME-SPACE (n°V, (log n)°‘"). Note that SC is presumably a
proper subset of P n DSPACE ((log n)®"). For example, the graph
reachability problem (GRP) (see section 2) is in the intersection class but
not known to be in SC.

The corresponding circuit-defined class is USIZE-DEPTH (n°,
(log n)°™M), which is called NC in [C1] and [R1] after Pippenger, who
first characterized it (see theorem 7.1). Again NC is presumably a proper
subset of the intersection class, although it is remarkably difficult to think
of a natural example of something in the intersection class but not in NC.
(The universal set UPL defined below may be an artificial example.)

Getting back to the original question, we now ask whether SC = NC?
The answer is apparently no, because there are natural problems in NC
which do not appear to be in SC. One example is GRP (or any other
complete problem for NSPACE (logn)). Other examples are integer
division and integer powering (see section 3). (Technically these should
be made into recognition problems by specifying an index i as part of the
input and asking whether the i-th output digit is 1.) And another class of
examples are those context free languages which we don’t know how to put
into SC (see theorem 7.5 below).

Conversely, it is not so easy to find natural candidates for the difference
set SC-NC. In fact, it is difficult to find sets in SC which are not clearly in
DSPACE (logn) (and therefore in NC). Any universal deterministic
context free language (DCFL) provides an example because of the result
in [Cl1], but again Ruzzo proved that all CFL’s are in NC.

One can still concoct artificial candidates for SC-NC. For example, a
universal set UPL for SC? (SC* = DTIME-SPACE (n°", log? n)) can
be constructed as follows: Design a machine M which shuts itself off if it
attempts to use more than log® n space or n* time. Let M on an input
coding a pair (x, y) simulate machine number x on input y; and accept iff
neither its pace nor time bound is exceeded and machine x accepts y. Then
UPL is log space complete for SC? and does not appear to be in NC,

We conclude that time and space together do not seem to be even
roughly equivalent to uniform size and depth together. However, Pippenger
[P1] proves that time and reversal together do correspond to size and depth

120 S. A. COOK

together. Here the reversal of a computation of a multitape Turing machine
is the number of times any of its heads changes direction (a hesitation is
not a reversal). Pippenger proves

TueorEM 7.1. NC = DTIME-REVERSAL (n°™", (log n)°™").

This is one characterization of NC, and Ruzzo [R1] points out several
others. In fact, NC appears to be a very stable and interesting class. In-
tuitively, it is comprised of all problems which can be solved very rapidly
on a parallel computer of feasible size. To make this statement more
evident, we point out NC can also be characterized in terms of aggregates
(see section 4).

TaeoreM 7.2. NC = UHARDWARE-AGTIME (n°Y, (log m)°").

This follows immediately from the definition of NC and the discussion
in section 4 about converting circuits to aggregates and vice versa.

I would like to mention three of Ruzzo’s [R1] characterizations of NC.
First, Ruzzo gives several alternative definitions of umiform circuit family,
including our definition in section 2, and proves that NC remains the same
for all of them. In particular, NC remains unchanged when the strong
definition of Ug uniform is chosen. From this and theorem 2.5 Ruzzo
concludes the second characterization:

Tueorem 7.3. NC = ATIME-SPACE ((log n)°‘", log n).

The third characterization is

THEOREM 7.4. NC = AuxPDA TIME-SPACE (2log" °) 1og n).

Here AuxPDA stands for auxiliary pushdown automaton. The theorem
holds whether it is deterministic or nondeterministic.
We now sketch the proof of another interesting Ruzzo result:

THEOREM 7.5. Every context free language is in NC.

Part of the interest of the proof is that it was apparently discovered using
ATM’s (via theorem 7.3), which is an indication that ATM’s are a useful tool
for discovering and expressing parallel algorithms. The proof of 7.5 follows
the classical [LSH] proof that every CFL is in DSPACE (log? n), but needs
a new idea. As in [LSH], we assume the grammar is in Chomsky form, and

i

SYNCHRONOUS PARALLEL COMPUTATION 121

try to verify the existence of a parse tree for the input string whose nodes
have the form (o, 7, j) (which is valid if symbol ¢ generates the segment of
the input between the i-th and j-th symbols inclusive). The ATM algorithm
proceeds by guessing (via an existential state) a node (o, 7, /) which generates
between one-third and two-thirds of the input string and then verifies (via
a universal state) that both (1) (o, 7, j) is a valid node, and (2) the original
root is valid given (o, 7, j) is valid. These two subproblems are solved by
executing the algorithm recursively. Since the depth of the recursion is
O (log n), the alternating time is O (log? n), but unfortunately a general
recursive call to the algorithm must remember up to log » hypothesis nodes
(G1siysj1)s oo (G4, 1a i), which require a total of Q (log?n) space to
express, so theorem 7.3 does not apply. The new idea is to keep the number
of hypothesis nodes down to two, by guessing at a common ancestor to
two of them whenever three hypotheses would otherwise be formed. This
keeps the space down to O (log n), so 7.3 applies.

In addition to comparing time and reversal to size and depth, Pippenger
also shows time and space together are roughly equivalent to size and width.
To define the last resource, let us say a circuit is synchronous if its gates can
be divided into levels such that all inputs to the gates at level / are either
input nodes x; or are from gates at level / — 1. Then the width of a syn-
chronous circuit is the maximum of the number of gates at any level.
Pippenger also gives a suitable definition of width for nonsynchronous
circuits and proves several relations among width, size, space and time, of
which the following is a corollary:

THEOREM 7.6. SC = USIZE-WIDTH (n°", (log m)°™").

Dymond [D1] extends Pippenger’s results to relate space and reversals
to uniform width and depth. Two easy observations along these lines are
that theorem 7.6 still holds if USIZE is replaced by UDEPTH, and SC
remains unchanged if time is replaced by reversal in its definition. In
addition, it is not hard to see that SC can be characterized in terms of
aggregates as follows:

THEOREM 7.7. SC = UHARDWARE-AGTIME ((log n)°"), n°1),

This result shows an interesting duality with theorem 7.2. The question
of whether NC = SC becomes the question of whether hardware size can
be traded for computation time in uniform aggregates, without exponential
blow up in the other resource.

122 S. A. COOK

8. OPEN QUESTIONS

Among the basic open questions in computational complexity are the
problems of finding lower bounds for various resources for any simple
interesting problem. In particular, for sequential complexity, we don’t have
any nonlinear time lower bounds nor any nonlogarithmic (i.e. w (log n))
space lower bounds on any natural problem in the class NP. For parallel
complexity, the same state of ignorance applies to nonlinear circuit size,
and nonlogarithmic depth and hardware. Theorems 2.2 and 2.4 indicate
that a nonlogarithmic lower bound on circuit depth may be weaker (and
therefore easier to obtain) than such a bound on space, so the depth question
deserves more attention. (There are already results which show the depth
complexity of some simple problems cannot be log,n + O (1): see
Neciporuk [N1] and Hodes and Specker [HS2].)

For simultaneous resource bounds, the situation is almost as wide open,
although Borodin and Cook [BC] have recently shown that sorting cannot
be done simultaneously in linear time and logarithmic space. It would be
interesting to get similar tradeoff results for other resource pairs, such as
size versus depth and aggregate time versus hardware. Another problem is
whether there exists any set whose minimum time complexity is at least,
say, the square of its minimum space complexity (assuming the latter is at
least Q (n)). Similarly for uniform size versus uniform depth and aggregate
time versus hardware size. (We do know by Lupanov’s result [S3] that
most sets have (nonuniform) size exponential in depth.

Finally, the questions concerning SC and NC mentioned in section 7
are worth emphasizing. In particular, it would be nice to know whether
one class is included in the other, and whether they are proper subsets of
their (common) intersection class.

Acknowledgement. While forming my ideas on parallel computation,
and in particular while writing this manuscript I had frequent conversations
with my colleagues Allan Borodin and Patrick Dymond, and their ideas
as much as mine have. contributed to whatever insights appear here. My
thanks also to Nicholas Pippenger for some very helpful conversations.

[B1]

[BC]

[BW]

[C1]

[CS]

[CKS]
[D1]
[FW]

(G1]

(G2]
[HI]

(H2]

[HIM]

[(HS]

[HS2]

[HU]
)

SYNCHRONOUS PARALLEL COMPUTATION 123

REFERENCES

[AKLLR] AreLUNas, R., R. M. Karp, R. J. LirtoN, L. LovAsz and C. RACKOFF.

Random walks, universal traversal sequences, and complexity of maze
problems. Proceedings 20th Annual Symposium of Foundations of
Computer Science, Oct. 1979, pp. 218-223.

BoRrODIN, A. On relating time and space to size and depth. SIAM J. Comp. 6
(1977), pp. 733-744.

BoroDIN, A. and S. Cook. A time-space tradeoff for sorting on a general
sequential model of computation. Proc. 12th Annual ACM Symposium
on Theory of Computing, April 1980, pp. 294-301.

Burks, A. W. and J. B. WriGHT. Theory of logical nets. In: Sequential
Machines : Selected Papers, E. F. Moore, ed., Addison-Wesley, 1964,
pp. 193-212.

Cook, S. A. Deterministic CFL’s are accepted simultaneously in polynomial
time and log squared space. Proc. 11th Annual ACM Symposium on
Theory of Computing, May 1979, pp. 338-345.

CHANDRA, A. K. and L. J. STOCKMEYER. Alternation. Conference Record
IEEE 17th Annual Symposium on Foundations of Computer Science,
1976, pp. 98-108.

CuaNDRA, A. K., D. C. KozeN and L. J. STockMEYER. Alternation. IBM
Research Report RC 7489, 1978.

DyMoOND, P. Simultaneous Resource Bounds and Parallel Computation. Ph.D.
thesis, University of Toronto, Dept. of Computer Science, 1980.
ForTUNE, S. and J. WyLLIE. Parallelism in random access machines. Proc.

10th ACM Symposium on Theory of Computing, May 1978, pp. 114-118.

GOLDSCHLAGER, L. A unified approach to models of synchronous parallel
machines. Proc. 11th Annual ACM Symposium on Theory of Computing,
May 1978, pp. 89-94.

—— Synchronous parallel computation, Ph.D. thesis and TR-114, Dept. of
Computer Science, Univ. of Toronto, December 1977.

HooveRr, J. Some Topics in Circuit Complexity. M.Sc. thesis and TR-139/80,
Univ. of Toronto, Dept. of Computer Science, Dec. 1979.

Hong, J. W. On some space complexity problems about the set of assignments
satisfying a boolean formula. Proc. 12th Annual ACM Symposium on
Theory of Computing, April 1980, pp. 310-317.

HARTMANIS, J., N. IMMERMAN and S. MAHANEY. One-way log tape reductions.
19th Annual Symp. on Foundations of Computer Science, Oct, 1978,
pp. 65-71.

HarTMANIS, J. and J. SiMoN. On the power of multiplication in random access
machines. Proc. of the 15th Annual IEEE Symposium on Switching and
Automata Theory, New Orleans, October 1974, pp. 13-23.

Hoprs, L. and E. SPEckER. Lengths of formulas and elimination of quantifiers
I. In: Contributions to Mathematical Logic, K. Schutte, ed., North
Holland Publ. Co. (1968), pp. 175-188.

Horpcrort, J. E. and J. D. ULLMAN. Introduction to Automata Theory,
Languages, and Computation. Addison-Wesley, 1979.

Jones, N. D. Space-bounded reducibility among combinatorial problems.
JCSS 11 (1975), pp. 68-85.

124

(K1]

[KL]

[LSH]

[MP]

[NI1]

[P1]

[P2]

[P3]

[PS]

[R1]

[R2]
[S1]
[S2]

[S3]
[S4]

[SS]

[Wi]

S. A. COOK

KozeN, D. On parallelism in Turing machines. Proc. of the 17th Annual
Symposium on Foundations of Computer Science, Houston, Texas,
Oct. 1976, pp. 89-97.

KaArp, R. M. and R. J. LipTON. Some connections between nonuniform and
uniform complexity classes. Proc. 12th Annual ACM Symposium on
Theory of Computing, April 1980, pp. 302-309. (Also presented at the
Specker Symposium on Algorithms and Complexity, Zurich, Feb. 1980).

Lewis, P. M., R. E. STEARNS and J. HARTMANIS. Memory bounds for recog-
nition of context-free and context-sensitive languages. IEEE Conference |
Record on Switching Circuit Theory and Logical Design, 1965, pp. 191-202.

MULLER, D. E. and F. P. PREPERATA. Bounds to Complexities of Networks
for Sorting and for Switching. JACM, vol. 22, No. 2 (April 1975),
pp. 195-201.

NecrporUK, E. I. A Boolean Function. Soviet Math. Dokl. 7, 4 (1966),
pp. 999-1000. Originally Dokl. Akad. Nauk. SSSR 169, 4 (1966),
pp. 765-766.

PrpPENGER, N. On simultaneous resource bounds (preliminary version).
Proc. 20th Annual Symposium on Foundations of Computer Science,
October 1979, pp. 307-311.

PATERSON, M. S. An introduction to boolean function complexity. Astérisque,
Société Mathématique de France 38-39 (1976), pp. 183-201.

PrereNGER, N. Fast simulation of combinational logic networks by machines -
without random-access storage. Allerton Conf. on Comm. Contr. and
Comp. 15 (1977), pp. 25-33.

PraTT, V. and L. STOCKMEYER. A characterization of the power of vector
machines. JCSS 12 (1978), pp. 198-221.

Ruzzo, W. L. On uniform circuit complexity (extended abstract). Proc.
20th Annual Symposium on Foundations of Computer Science, Oct. 1979,
pp. 312-318.

Rivest, R. L. The necessity of feedback in minimal monotone combinatorial
circuits. IEEE Trans. on Computers, June 1977, pp. 606-607.

ScHNORR, C. P. The network complexity and the Turing machine complexity
of finite functions. Acta Inf. 7 (1976), pp. 95-107.

SCHONHAGE, A. Storage modification machines. Technical Report, Mathe-
matisches Institut, Universitidt Tiibingen, Germany, 1979.

SAVAGE, J. E. The Complexity of Computing. Wiley, 1976.

SiMoN, J. On feasible numbers. Proc. 9th Annual ACM Symposium on Theory
of Computing, May 1977, pp. 195-207.

SavitcH, W. and M. StimsoN. Time bounded random access machines with
parallel processing. JACM 26, January 1979, pp. 103-118.

WyLLig, J. C. The complexity of parallel computations. Ph.D. thesis and
TR-79-387, Dept. of Computer Science, Cornell University, 1979.

(Recu le 5 juin 1980)

Stephen A. Cook

University of Toronto
Department of Computer Science
Toronto 181

Canada

	TOWARDS A COMPLEXITY THEORY OF SYNCHRONOUS PARALLEL COMPUTATION
	...
	1. Introduction
	2. Circuits and Alternating Turing Machines
	3. Log Depth vs Log Space
	4. Conglomerates and Aggregates
	5. Hardware Modification Machines
	6. Other Modifiable Models
	7. Simultaneous Resource Bounds
	8. Open Questions
	...

