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Remarks 1. The above formal arguments are equally valid for the Chow

ring of the grassmann variety over an arbitrary algebraically closed field.

2, One can hope to mimick the above strategy for the homogeneous

space S02n+1{Un. The group G is of type Bn and the maximal parabolic is

determined by the "right-end" root. It is not difficult to write out the Pieri

formula for the flag manifold of type Bn (see the author's "Pieri formulae

for classical groups", preprint). In addition, W°, for this case, can be

identified with the power set of {1,2,...,«} and one can compute
c (aß 2X{jy (The 2 occurs because c is not onto.) Still the problem is

complicated by multiplicities. We hope to return to this elsewhere.
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