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76 H. L. HILLER

Hence, there are at most [G : H] free parameters in determining y e V¥
and clearly each choice gives an invariant. This finishes the proof.

COROLLARY 5.6. dim (Hy®) = [W: W, = |W°| and the X,
we W°, are an R-basis for Hpo.

Proof. Chevalley [8] has shown that S}, hence Hy, is abstractly
equivalent to the regular representation of W, as a W-module. Hence,
(5.5) applies and the result follows.

It is now possible to “restrict” the Pieri formula (4.5) for Hy, to Hpy®.
We have

THEOREM 5.7. If w,w' e W° andin Hy

X, Xy = > cw,w,w)X,.

then in Hp,o wrew
X, X, = > cww,w)X,

w” e w0

Proof. One need only observe that the vector space map r : Hy — Hpyo

given by
X, ifwew*
r(X,) = .
0 otherwise

is a retraction. Then, applying » to both sides of the first equation yields
the second equation since the invariants form a subalgebra.

This result will be useful in the next section for computing inside the
algebra of Wy-invariants. Notice that an appropriate Giambelli formula
for HJ 0 is not as easily obtained. This is because the Giambelli formula
for Hy, gives X,, as a polynomial in the X, ’s and not all of these are in the
algebra H}0, so this is not quite the right thing.

6. APPLICATION:
THE COMBINATORICS OF THE CLASSICAL PIERI FORMULA

In the last section we saw that given a pair (W, W,) of a Coxeter group
and a parabolic subgroup, one could construct a formula to describe the
multiplication of Schubert generators in the invariant subalgebra H} 6. In
this section, we examine the particular case (2, ., 2, X 2,) where 2, denotes
the symmetric group on m letters. Indeed, 2, is the Weyl group of the
root system of type A4,,,- 1, which we recall briefly here. Let V' = R"**
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equipped with the usual inner product and let ey, ..., e,., denote the
| standard basis. X,., acts by permuting these basic elements. This action
| is effective on the (n+k — 1)-dimensional subspace

n+k n+k
:{ Z /L-eit Z j,l:O }
i=1

i=1

- and it is easy to see 4 = {e; — ej} j+i can be chosen as the corresponding
root system. In addition, the simple roots 2 = {ei — e, 1} {—ien+k—1 and
the positive roots 4% = {ei — ej}i< j» induce the usual transpositions of
the basis vectors.

The main result of this section is the identification of the Pieri formula
for Hs Ekx z " with the classical Pieri formula (see [7, 16]).

We begm with a rapid review of Chern’s Schubert calculus for the co-
homology of a complex grassmannian [7]. Let G, (C"*¥) denote the space
of k-dimensional complex subspaces in C"**. This is a compact, smooth
manifold of dimension 2nk. Ehresmann [14] described a cell-decomposition
for G, (C"**%) (along with other algebraic homogeneous spaces) whose cells
are identified by certain Schubert symbols (d,, ..., d;), where

l1<d, < ... <d, <n+ k.
Each symbol yields a cohomology class {(d; ... d,> of dimension

k(k
5 Z (d—l)-(Zd)——(—-{;l)

i=1 i=1

Geometrically, {d,, ..., d,) is the cocycle dual to the cell
[dy,...nd] = {X €G,(C"*: dim (XAR") > i)
It is easy to see the d;’s describe the “jump-points” in the sequence
0 < dim (XnC") < dim (XnC?» < ... < dim (XnC"* ) <n + k

where 0 = C' = C? = ... = C"** is the standard flag determined by the
coordinate axes.

On the other hand, G, (C"™*) can also be profitably thought of as the
homogeneous space G/P where G is the complex Lie group GL,,, (C) and
P is the maximal parabolic subgroup of the form

GL, (O *

0 GL, (C)
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If K denotes the maximal compact subgroup U, ., of G then we also have
the identification G, (C"*%) = K/(U, % U,). |

More generally, one can consider a complex semisimple Lie group G .
and a parabolic P, in G corresponding to a subset 0 of the simple roots X. |

The homogeneous space G/P, has been studied by various authors and |
we will assume known that ‘

H*(G/Py;R) = H*(G/B;R)"

(Sp)"®

This will be the basic topological input [2].

Now we fix G to be the Lie group of type 4,,,_; and 0 = ¥ — {ock}
(where we write o; = ¢; = ¢;4; and 5; = s,)) so that G, (C"*" = G/P,.
We begin with some easy length computations.

lIe

1

LemMA 6.1. If we W, then

I(ws;) = 1(w) = pi; (21 1;, ;1 +1)
where
b = { +1w(@) < w())

—1w() > w(j)
and

I; = {i<z<j:w(z)is between w (i) and w (j) } .

In particular, [(ws;;)) = [(w) + 1 if and only if (()w(@) <w(j) and
(ii) there are no intermediate w-values, i.e. I,; = ¢ (we often abbreviate
this pair of conditions by w (i) < < w (j).

n—1

Proof. Recall the length function on ), ;. is given by [ (w) = ) ¢; (w),
i=1

wheree; = ] {i >jiw (@) < w())} l, the number of inversions of w. Hence

[(ws;;)) — l(w) = (e —e) + (ej,—ej) + ) (e, —e,)

i<z<j
where ¢, = ¢; (w) and ¢, = ¢, (ws;;). Certainly, right multiplication by
s;; does not affect the values of ¢, below 7 or above j. Also
e, =e¢ +|{i<z<jrw(@)<w()}| =e¢ +e
ef = —|{i<z<j:w(@)<w()}| =¢ —&
so we get ’
(e;—e) + (e, —e;) = (e;+e—e) + (e,—e—¢))
=e—e = pi,j(lli,j|+1)
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It is easy to see

o — o = pi,; ifzel;
z z 0 otherwise

putting this all together we get the result. The second assertion follows
- immediately.
We can now write down (4.6) for Hy,, W = > 44

PROPOSITION 6.2. If We Y44 1 <i<n+ k —1, thenin Hy,

Xsi'Xw = z stbt
(b,0)

where (b, t) satisfies b <i <t and w(b) << w(t).
Proof. By (4.6), X, appears with coefficient ((e, —¢,)", »;) if and only
if [(ws,) = 1[(w)+ 1. This is equivalent to the last condition by (6.1).

Finally (e,—e,)’ = e, — ¢, = a + ... + o,_4, so that first condition is
also needed and the coefficient is correct.

Remark. The Poincaré dual of this formula appears in [18, p. 265].

We now identify the set of left coset representatives WP If
1<dy<..<d,<n+kandd, <..<d, isan ordered enumeration
of the complement then we define (dy, ..., &) € Y 4k, DY

d1<i<k

dy, ..., dy) () =
(d, K (D) {di_k]<+1<i<k+”

(We also write X (dy, ..., d,) when it is convenient.)

LeMMmA 6.3.
Wo={dy,...d):1<d, <..<d,<n+ k}
and [(dy,..,d) = .Zl (d;—J).
Pr=

Proof. Clearly I((dy,...,d)s) = I(dy,..,d) + 1, for all i # k by
: k
(6.1), for example. Since | W°| = | W VARZ | = (nz— > the first
assertion follows. For the second, we need only observe

dy —j if j<k
0 otherwise.

ej(dl,...,dk) = {
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This lemma indicates how the Schubert notation arises from a group-
theoretic point of view. That this notation is consistent with the geometry
is a theorem of Demazure [12].

A Pieri formula should compute the product of X, (a linear generator, -
by (5.6)) and an algebraic generator. Since the map

S S ()"

is onto we can find algebraic generators by computing the images of W,-
invariants. In general, W, is a (reducible) Coxeter group, so we have the
fundamental invariants [20]. In our case, we have simply

SV = Z[ty, ..., 4, 61, evrs Gy

where 7; = 5;(ey, ..., €), | <i<k,ando; = 5;(€g415 s €pun)> 1 <Jj <1
and s; denotes the j* elementary symmetric function in an appropriate
number of variables. One knows ¢ (¢;) suffices to generate Hy®. So we
compute

LEMMA 6.4.

c(o) =(—-1)/X =(=-1D/X(1,2,..,k—=1,k+j)

Sk+j—1’ ...,Sk
Proof. By section 2
cloy) = ) A.(0)X,

L(w)=j

If we write 4, for 4,, then clearly 4, (6;) = 0, if # # k and

Sj(@kats eees€rrn) — Sj(€hs oves in)
A (o) = .
€ — €r+1
_ (erv1—€0) Sj—1 (psas -vs €pin)
€ — €k+1

= (=1 ;-1 (€25 -ee €k+n)

We can continue by induction and get A, ;_; ... 4, (0;) = (—1)/, while
any other sequence of simple roots yields zero.
We now proceed to a computation of

X(,2, 0 k=1, k+)) X(dy, oy dy) .

The case j = 1 is easy.
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PROPOSITION 6.5.

X(1,2, . k=1,k+1) X (dy, ..., d)
- Z X(dlb"'ﬂdi_{_l""’dk) .

i+i<diy

Proof. Since (1,2, ..,k—1,k+1) = 5, we apply the case i = k of
(6.2) and observe w (b) < w(¢) if and only if w(z) = w(b) + 1.
We now observe

LEMMA 6.6.

X, X —-X

c(0)) = 8;(Xs oy =X Xy o= X oo Sp k1)
Proof. By the tables of [6], the i-th fundamental weight is

i
n+k

COi = 61 + cos + ei - ( )O-l (81, ceey €n+k) .

Hence w; = e, + ... + ¢; (mod I,) and we get

C(O-j) = C(Sj(ek-i-la "-3ek+n))
= C(Sj(a)k+1_a)k: sy .—wn-l'k—l))
= SJ(X X cee s ’_X

Sk+1 O sg? Sn—l—k—l)

since ¢ kills I and (3.4 ii).
This suggests the following computation.

LeMMA 6.7. Forall i,k + 1 <i<k+ nweW; in Hy

(Xsi_Xsi+1)Xw = stit - Z stbi
i<t k<b<i
w (i) << w(t) w (b)) << w(i)
- b; stbi

w(b) << w(i)

Proof. Computing with (6.2), we get

i<t w (i) << w (£)

w(b) << w(t)

L’Enseignement mathém., t. XXVII, fasc. 1-2. 6
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and
KXoy Xw = Z Xosy + Z X svspi
b=i-1 b<i
i<t w(b) << w(i)

w(b) << w()

Upon subtracting and breaking up the second term the desired expression
follows.

THEOREM 6.8. In

s, (X X, ., =X YX (g, esdy) = (=1 ZX(ey, ..., e)

Sg1 Usgr o Sptk—1

where the summation ranges over (eq,...,e,) satisfying d;, <<e; <d;;q

k K
and ) e, =j+ Y d.
i=1 i=1

Proof. Of course

Sj = Z (Xstj—Xstj_l) ...(X ‘-X

N St )
k+1 <ty <. <tj=k+n 31 1—1

where we set X, = 0. It is not difficult to check that the third term of
(6.7) alone yields the right-hand side. Hence it remains to show that the
contributions arising whenever either of the first two terms of (2.7) are
involved cancel in the final summation. To do this it suffices to show that
the resulting subscripts in W do not lie in W°. (Then they must have co-
efficient zero since Hy o is a subalgebra of H,.)

Now the first two terms of (6.7) always give a transposition above
k + 1 and it must be elementary one by (6.1), say s;, i >> k. Such a trans-
position will send an element of W out of W° We claim no further -
transposition s, with either b > i or ¢ > i, will put the subscript back
in W°. Both cases are easy to check and the proof is complete. Finally, by

a substitution from (6.4) we get

In+k

COROLLARY 6.9. (Pieri formula). In H3F* *» = H* (G, (C**H))
X(I,Z, cee k—l, k+]) X (dl’ cee g dk) = ZX(el, vee gy ek)

where the summation is as in (6.8).
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Remarks 1. The above formal arguments are equally valid for the Chow
ring of the grassmann variety over an arbitrary algebraically closed field.

2. One can hope to mimick the above strategy for the homogeneous
space SO,,, 1/U,. The group G is of type B, and the maximal parabolic is
determined by the “right-end” root. It is not difficult to write out the Pieri
formula for the flag manifold of type B, (see the author’s “Pieri formulae
for classical groups”, preprint). In addition, W? for this case, can be
identified with the power set of {1, 2, oy n} and one can compute
c(0;) = 2X;;,. (The 2 occurs because ¢ is not onto.) Still the problem is
complicated by multiplicities. We hope to return to this elsewhere.
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