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74 H. L. HILLER

Example. Recall that in Hy, we computed

1 2 2
X =§(_Xsa+XsﬁXsa+ 2Xsﬂ) :

Sa Sﬁ
By (4.6), one can compute

X, =X

sﬁsa
XSBXSa = XSﬂ Sa + Xsa Sﬂ
2
XSﬁ = Xsa SB

and this confirms our earlier computation.

5. Hy AS A W-MODULE AND PARABOLICS

If (W, S) is a Coxeter system and 0 < S then (W,, 0) is also a Coxeter
system [6, p. 20] and W, is called a parabolic subgroup of W. In addition,
it is easy to see that a geometric realization (4, %) of (W, S) can be restricted
to a geometric realization of (W,, 6). The collection {WG}OCS of parabolic
forms a lattice of 2!S! distinct subgroups where, for example, W, N W,
= Wyn,.. We will eventually be concerned with the set of left cosets of W,
in W. We define W° = {we W :[(ws) = [(w) + 1 for all s€6}. The
following basic result is well-known [6, p. 37 and p. 45].

THEOREM 5.1. Every element w of W can be uniquely expressedas
wl - wy, with wle WO wye W, and furthermore [(w) = I (W°) + I(w).

This immediately yields

COROLLARY 5.2. W*° is a complete set of left coset representations for
W, in W and furthermore provides an element of the coset of minimal length.

In this section we analyze the subalgebra Hy® of Wy-invariants in Hy.
The most straightforward approach is to compute exactly the action of W
on Hy,. This is easily done by exploiting the computation (4.1).

THEOREM 5.3. The structure of Hy as a W-module is given by

X, : if I(wsy) = 1(w) +1

Sa

(
|
[ X, — Y (s L)X, if I(ws) = I(w) — 1.

4
WS, —> w’
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Proof. As in (4.5), choose A4 such that ¢ 4,(4) = J,,. Then, since ¢
| isa W-map

San = C(SaA) = Z 8Aw’(sazfl))(w'

weW
= Y ed,(1-a*4)(ADX,,
weW
= Xw - Z (8Aw'a*) Aa(A)Xw’
wo#Ew
=X,— Y (9770, a)edy (DX, by (4.1)
b
g —> w

= (97 (), 2)X,,

g — w
L(gsy) = 1(g) + 1
gsy = Ww
= Xw - Z (Saw—l (Y)ua O‘)Xw’

Y

’
Wsa—-)w

Note, that the summation in the next to the last line is non-vacuous if and
only if / (ws,) = [ (w) — 1. This completes the proof.

COROLLARY 5.4. X, e Hpyo if we WP,

Proof. Immediate from (5.3) and the definition of W°,

The following elementary result shows that the X,,, w e W, are actually
an R-basis for H .

LEMMA. If a finite group G acts on a real vector space V via the regular
representation and H is a subgroup of G, then
dimg (VH) = [G: H].
Proof. Let {e,}, be a basis for V, so that

, . —
g "€ = &y

Then if y = ) ¢&,eVH we claim &, = &, if g = g’ (mod H). Indeed,

geG

ifg = g’ h, he H, then
¢, = coeflicient of ¢, y in
= coefficient of ¢,, in A™1 y-

= coefficient of e, in y

= ¢,
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Hence, there are at most [G : H] free parameters in determining y e V¥
and clearly each choice gives an invariant. This finishes the proof.

COROLLARY 5.6. dim (Hy®) = [W: W, = |W°| and the X,
we W°, are an R-basis for Hpo.

Proof. Chevalley [8] has shown that S}, hence Hy, is abstractly
equivalent to the regular representation of W, as a W-module. Hence,
(5.5) applies and the result follows.

It is now possible to “restrict” the Pieri formula (4.5) for Hy, to Hpy®.
We have

THEOREM 5.7. If w,w' e W° andin Hy

X, Xy = > cw,w,w)X,.

then in Hp,o wrew
X, X, = > cww,w)X,

w” e w0

Proof. One need only observe that the vector space map r : Hy — Hpyo

given by
X, ifwew*
r(X,) = .
0 otherwise

is a retraction. Then, applying » to both sides of the first equation yields
the second equation since the invariants form a subalgebra.

This result will be useful in the next section for computing inside the
algebra of Wy-invariants. Notice that an appropriate Giambelli formula
for HJ 0 is not as easily obtained. This is because the Giambelli formula
for Hy, gives X,, as a polynomial in the X, ’s and not all of these are in the
algebra H}0, so this is not quite the right thing.

6. APPLICATION:
THE COMBINATORICS OF THE CLASSICAL PIERI FORMULA

In the last section we saw that given a pair (W, W,) of a Coxeter group
and a parabolic subgroup, one could construct a formula to describe the
multiplication of Schubert generators in the invariant subalgebra H} 6. In
this section, we examine the particular case (2, ., 2, X 2,) where 2, denotes
the symmetric group on m letters. Indeed, 2, is the Weyl group of the
root system of type A4,,,- 1, which we recall briefly here. Let V' = R"**
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