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66 H. L. HILLER

This result rapidly yields our version of the “basis theorem” of the
Schubert calculus, namely

THEOREM 2.9. Ker (¢) = I, and c induces an isomorphism Sy ~ Hy.

Proof. For the first assertion, by (2.8), it suffices to compute

c(d) =AY A, ()X, = Ad,,(d)X,,
= 2| WX, .

Finally, ¢ is clearly onto by construction.
In the next section we will work on producing an explicit section for c.

Remark. Demazure’s proof, though restricted to Weyl groups, is done
integrally. In that situation, ¢ is not onto, and Demazure computes the
order of the finite quotient. It corresponds to the usual notion of torsion in
Lie groups [3, 5]. Indeed, the point is that only when W preserves some
integral lattice can one hope to carry out an analysis in integral cohomology;
in the general case we must resort to real cohomology, as we do here. Of
course, the torsion problems then disappear.

3. GIAMBELLI FORMULA

We begin with an easy lemma.

LemMmA 3.1. 4 is quasi-multiplicative, i.e.

y Ay if Lww’) = 1(w) + 1(w')
v {0 otherwise.

Proof. The first clause is immediate since the conditions implies that
reduced decompositions of w and w’ can be juxtaposed to yield a reduced
decomposition of ww’. Now suppose w = s, w’ and [(s,w') = [ (W) — 1
(that this is the only possibility that follows from (1.1)). Then w' = s, (s, W)

and
I(w) =1+ (l(w’)—l) = I(s,) + I(s,w)

so by the first part 4, = 4, A4, But
0 = AsaAsaAsaw’ = AsaAw’

by (2.2 ii) and induction on / (w) completes the proof.
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COROLLARY 3.2. & 4, 4,,-1,, = Syt Ay 01 Sy (V).
Proof. If w' = w, then by (1.4) and (3.1)

A, 4,1, = 4y,
and the result follows.
We now need only consider w # w, but with I (w) = I (w’), (otherwise,
we are done for dimensional reasons). Thus

L(w) + L(w™ wg) = L(w") + (I(wo) =1 (w)) = 1(wo)
and
L(w' w™twg) = I(wg) — L(w'w™) # [(wy)

So by (3.1), 4,,- 4,,- lw, = 0, and the proof is complete.
It is now easy to dualize this to the following assertion:

d
CorOLLARY 3.3 (Giambelli formula). ¢ <Aw—1w0 (—)) = X,. Hence

| W
in particular, c|{—— ) = X, .
| W 0

d
pro e (v )) = 2 "( 07
weW
d

=y b (l

weW
Lw') = 1(w)

=X, by (2.5).

d
Note that the map o : Xwn—>Aw—1w0 <|> is a vector space section

| W
for ¢. In the remainder of this section we will find other I,-equivalent
expressions for XWO and use these to put ¢ in a more manageable form.

We will call X W, the fundamental class of the cohomology ring Hy,.

Example. Let W = W (A,_,) = 2,. As usual, the positive roots A4~
are {e; — e; :i < ;} where {e;} is the standard basis of R". Hence, the
fundamental class is ¢ of a multiple of the Vandermonde determinant, namely

2 n—-1
1 e, e, ... €,
2 n—1
1 1 en—l en—l en—l

S
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In this example we used the standard basis for V. The following result
indicates that a Coxeter generalization of the fundamental weight basis is

more appropriate in our situation. Recall the fundamental weights {wa} s

are given by the requirement

(CO“ s ﬁv) = 50:/3
We now have

Lemma 3.4.

(i) Aﬂ(a)a) =2 5aﬁ,
(i) cl0) =X,,

(i) c@ = 5 (@p)Xs,.
Proof.
(1) Aﬁ (a)a) = ﬁ—l (a)oz — Sp (wa)) = ﬁ_l (wa — (wa - (CUa, ﬂv)ﬁ))
= (waaﬁv) = éaﬁ
(i) (o) = 2 ed, (@)X, = ) dp(o0)X,;=X,
weW feX
(i) Since a = ), (a, f*) w4, the result follows immediately from (ii).
BeZ

This result tells us that if we can write X, as ¢ of some polynomial in
the {a)a} wez OT {oc} «z We will have also written X, as a polynomial in the
X,s. We will often abbreviate the Cartan matrix entries by ¢, , = (a, )

oL 7T
= — :: 5 :: CoS ( ) . In practice, it is maximally efficient to write X, as
Wlaﬂ

a polynomial in the simple roots, since then an easy substitution will yield
either a polynomial in the weights or a polynomial in the original co-
ordinate variables ey, ..., ¢,.

It is possible to relate the fundamental class % O with the invariant

theory of W.

ProrosiTiON 3.5. Let fy,....f, be fundamental invariants for W.

0x;

of.
Then, if J = det (—fl> is the Jacobian of these polynomials there is a real
number A such that
c(A) =X, .

Proof. This followé from the stronger, well-known assertion that d
divides J [20, p. 85]. (It also follows from the theory of complete inter-
section rings.)

|
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In the interest of understanding the Giambelli formula (3.3) we deduce
some formulae for 4., (d). If {oci} 1—i are distinct positive roots we denote

by d,,.,,, ., the product d - ]_—[1 a7 = [] o Itis easy to see

aed
aFa;

LemMA 3.6.

[ Aspayy s spam, 8 B = o

Sﬂ (dal, cers an) =

Proof. Since s, permutes the set 4™ — {f}, it also permutes

A7 - {ﬁa Ags ooy Ly S'p (061), s S g (a")} 2

where f # «;, for all /. Hence

1 _dsﬁ (@) 5 e s S (an) otherwise.

2 2
Sp (dal,...,an) = S (dﬂ,al,...,ozn, sp (@1 s Sp (an)) Y (B) - Sp (¢;)0...0 Sg ()

= dﬁ,al,...,an,sﬁ(al),...,sﬂ(an)'(_/))) 7 SRR s M

= —dsﬂ (@1), . sp (@)

Similarly in the other case.

ProposiTION 3.7.

— 1)!sl .
( 1) 1—[ Cas, B
s#E ¢ ies
A
se{l,..,j,..,n}
‘BISI—ld, , R
{ai:Les},sﬁ(al),..,sﬁ(aj),..,sﬂ(an)
Aﬂ(dal,..,an) = lf‘ﬂz O‘j
dala--aarpﬂ + dSﬁ(al),..,Sﬁ (an),ﬂ

otherwise

Proof. The second case is easy so we look at the first
—_——
— =1
AB (dazl, s “n) - ﬁ (dal 5 w5 Oy _dSp(dl), Y (aj), e, Sﬁ(“n)s ,B)

—

-1
- ﬁ [dal,...,an, sﬁ(al),...,sﬁ(aj),...,sﬂ(an)

—

(spog) o spog) sy () — oty

———

= d

Xgseesps Sp (Otj), s Sg (aj), s ,sﬂn(a)

p~! ( ll;lj (O‘j_(o‘jaﬁv)ﬁ)_ H O‘i)

i#j

and after writing the product as a sum the desired expression follows.
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It is possible to use (3.7) to explicitly compute polynomial expressions
for X,.

Example. Let W = W (A4,) where A, is the root system in R*® with
simple roots X = {x = e; — e,, f = e, — e;} and the additional positive

1
root « + f = e; — e;. Hence Xwo = i o B (a+p). As a check of this we

compute the Jacobian J of the fundamental invariant. Recall

01 = —(exte3)(extes) +eye;
and
o, = —(epte3)es ez,
where we have eliminated e; = — (e, +e3). Then:

J = 3(9593“3%32) + 2(93—93) =d,

1
so also, XWo = 3 J. Now by (3.7) we can compute
A, (2) = tay =
o g =E( a)_EAB(OC+ﬁ)

and
a\ 1 (g J 1 1
4, 4, 3 =§(A,3da)) = §( apT sg(a),ﬂ) =z (@+f+a) = 3Q2u+p)

so that:
X, s =3B@+p and X, = Q¢+ = o,

as one easily checks.

—1
Now since the Cartan matrix is (_1 2) we have
o = 2w, — Wy

so for example

= %("Xsa"'-sza) (Xsa_‘_XsB)
_ 1, y2 2
— 3( X”S“a_l_XSﬁXsa_I—ZXsﬂ)

Sa S

which will be confirmed further in the next section.

Remark. In the crystallographic case, it follows from the Weyl deno-
minator formula (see [6, p. 185], [2, p. 17]) that




SCHUBERT-COXETER CALCULUS 71

d pN
I_VFI = (mod I )
 where p is the sum of the fundamental weights. Hence one can attempt to
compute the operators 4,, on p”.
It is possible to develop such formulae and we hope to treat them else-
where. In particular, one might want to conjecture in the general case that
p" ¢ I, maybe even for all p in the interior of the fundamental chamber.

4. PIERI FORMULA

Recall that the algebra of operators /\ 4 was generated by both the
4,s and the multiplication operators w*. Using the basis constructed
in (2.9), if one composes such operators, say w* o 4, or 4, 0 w*, it
should be possible to express them linearly in terms of the operators 4,,
g € W. Of course, our eventual concern is with the algebra /\ , and

cow* A, =0.

So, if we compute the commutator [4,, w*] a quick application of & will
yield a formula for ¢- 4, 0 w*. Here we are following the strategy of
Bernstein-Gelfand-Gelfand [2]. Essentially, this result is our Pieri formula
disguised in its dual form.

In order for the techniques of section 1 and induction to be easily
applicable, we work with the slightly modified operator w™! 4, (recall
W < /\ ). The main result is

THEOREM 4.1. If we W,we V*, thenin End S (V),

[wid,,0*] = Y (W', o)wld, .
Y
w o— w

We will now fix a reduced decomposition w = Sqps s Sy, and write
s; fors,,; and w; = s, ...s,.. First we have the following easy observation.

LEMMA 4.2. Let 0; = s, ... 8,01 () = w;pq (@), 1 <i<k. Then
i) w4, = Ay, dg, ... 4y,
and
(i) 5o, (WD) = W

Proof. Note by (2.21i, iv) s, 4, = A,. Hence
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