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1. COXETER GROUPS

We begin by reviewing some of the elementary theory of Coxeter groups.
Some detail is included to avoid any oblique use of the crystallographic
condition. Following Bourbaki [6, IV] we say (W, S) is a finite Coxeter
system if W is a finite group given by the presentation (s; € S I (s;s)" W = 15
where m;; is the order of s;s;. It is possible [6, V] to construct a real
Euclidean space ¥ and a root system (4,ZX) in V that “geometrically

realizes” (W, S). By this we mean the following. If y € 4 then

: o _ 2
5,(x) = x —(x,7)y <co root y o, y))

is the reflection through the hyperplane perpendicular to the root 7y, and
we can form the subgroup W (4) of GL (V) generated by the s.’s, y € 4.
In fact, the 5,’s, o € ¥, generate W (4) and we call the pair (W (4), {s, :0€X})
the Weyl system of (4, X). Coxeter [9] proved that the Weyl system is always
a Coxeter system and if this pair is isomorphic (in the obvious sense) to
(W, S) we say (4, X) is a geometric realization of (W, S). Of course, the
choice of such a (4, X) is not unique. But clearly up to a rigid motion of V,
the root system is determined by the lengths of the simple roots.

If the lengths can be chosen so that (x, f*) e Z for all o, f € X, we say W
is crystallographic (or a Weyl group). Geometrically, this means that the
Z-lattice generated by X is preserved by W. As mentioned in the intro-
duction, even this choice of relative lengths is not necessarily unique.

We can choose a vector ¢ € ¥V, such that (¢, «) > O for all x e 2 (i.e. # is
in the fundamental chamber C). This vector decomposes the roots
A= A" ][] 4~ where

AT = {yed:(y,1) > 0}

and A~ = —A%. Note that |A+ I = N = —%—lzj l, where N is the number
of reflections in W as described in the introduction.

It is now customary to attach an edge labelled graph to (W, S) called
the Coxeter graph. The nodes correspond to the elements of S and s, is
attached to s; by an edge if m;; > 3, and if also m;; > 3 the edge is labelled
with the number m;;. In 1934, Coxeter [9] classified the Coxeter groups
with connected graphs and showed that every Coxeter group is a product
of the “connected” components. The classification of the irreducible
Coxeter groups along with the fundamental degrees is
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TABLE
w Coxeter graph dy 5 ..., dy
A, @ ¥ g o o o B -y 2,3,.,n+1
B, & - P o 0 o -—-.-—i-. 2,4, ..,2n

Eg e ¢ - * ']
Fy -——e 4 o -

G .-—6--‘

H; . 2 *- .

Hy P 54 P

I, (m) —

2,4,..,2(n—2),2(n—1),n

2,5,6,8,9,12

2,6,8,10,12, 14, 18

2,8, 12, 14, 18, 20, 24, 30

2,6,8,12

2,6

2,6,10

2,12, 20, 30

2, m

We will assume throughout that W is irreducible.

The crystallographic Coxeter groups and their root systems are well-
known and correspond up to a choice of relative lengths of the simple roots
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to the Cartan classification of simple Lie algebras over the complex numbers.
The dihedral groups are the Weyl groups of I, (m), and are the symmetry
-groups of a regular m-gon (from which it is easy to construct (4, 2)). The
group H is isomorphic to a product of Z, and an alternating group on
five letters and H, is the symmetry group of a certain 4-dimensional poly-
tope [9, 10].

The primary piece of structure available on a Coxeter group is the
length function | : W — N, where [ (w) is defined as the minimal length of
an expression of w in the generators S. If /(w) = k and w = 5 ... 5,
s;€ S, we call this a reduced decomposition of W. There is an alternative
intrinsic description.

LemMA 1.1. Let I',, denote the setof ye A" such that w(y)e 4™, then
Q) | T, | = |Tw]| £ 1 if and only if w(2) € 4%,
(i) I(w) = | T,
(iil) I (ws,) = I(w) + 1 ifand only if w(x)e A=,

>

Proof. To see (i) one need only recall that I'y = {oc}. This first assertion
then implies | r, l < I (w). The other inequality follows from an induction
on | r, l and then (ii) follows. (iii) is immediate from (i) and (ii).

The next piece of structure on the Coxeter group we require is the so-
called Bruhat ordering [13]. We define w’ — w (intuitively, w’ is an im-
mediate predecessor of w if there exists a positive root y such that
o,w = w'and [ (W) = [ (w) + 1. (We will often adorn — with the unique
such 7.) Since W is transitive on the roots and ws, w™! = Sy(ay the first
condition is equivalent to w’ w~! being a conjugate of a fundamental
reflection s € S. The Bruhat order < on W is the transitive closure of the
ordering —. Note that / is forced to be strictly order-preserving so that the
two pieces of structure we have introduced are compatible. We can now
relate — to any particular reduced decomposition of w.

Lemma 1.2. If w = §4...8, is a reduced decomposition, then w' — w
A

only if w' = w} where w} = s;..5;...5, (and " denotes deletion).

Proof. See Theorem 1.1 (ITT) in [13].
Hence, in general, the Bruhat ordering corresponds to the subwords of
any reduced decomposition. So, for any i we can find a y € 4" such that

s, ws = w. The next result describes these roots y both specifically and
abstractly.




62 H. L. HILLER

LEMMA 1.3. If w = s{..58 is a reduced decomposition, define
0; = 51 ..85.1 () where s;=5,,0,€X. Then the following sets are |
equal |

@) Iy_y =47 aw(d?),
(i) 01 2o,
(iii) red™ s, w = w}.

Proof. (i) < (ii). Let ye A" and w™ ! (y)ed~. Let j be the smallest
number such that s;...s5; (y)e 4™. Then o; = 5;_4 ... 5; (7). Hence y = 0,.
(i1) < (iii). It suffices to compute
So; Wi = Sgp e s;_, () (Sg onn 85000 skz\
= S1 e Si'-l Si Si—l oo Sl (Sl o Si oo Sk)

= Sl‘“Sk = W.

But now |I,_,|=Iw ')=1I(w) =k by (1.1) and certainly
| {red® :s,w} = w} | <k, so all three sets must be equal. |

Remark. Though the 0,’s are defined in terms of a reduced decompo-
sition, (1.3 1) shows that they are actually independent of the choice made.

We now recall that the Bruhat order on W possesses a unique top
element of greatest length.

LEMMA 1.4. There exist a unique element wy e W such that [ (w,) = N.
In addition, wy > w, forall we W,wi = 1 and 1(ww,) = I (wo) — I (W).

Proof. One knows that W acts simply transitively on the chambers and
Wwo 1S chosen to be the unique element satisfying wy, C = — C. The rest is

standard, see [6, p. 43].
Finally, we make some remarks on the (anti) invariant theory of Coxeter

groups. The main result is

ProrosiTiON 1.5. If (W, S) is a Coxeter system, then the invariant
algebra S (V)Y has | S | algebraically independent generators of degrees
2=d,,d,,..,d,. Equivalently, S) is a free S)"-module.

Proof. This follows immediately from Chevalley’s theorem [8].

Remark. 1t is often useful in this context to think of W as the Galois
group of the rational function field S (V) over the rational function field
S (V)7 of the invariants. We exploit this point of view in the next section.
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There is also a theory of anti-invariants, i.e. polynomials u € S (V) such
that w - u = (—1)* 4. The algebra of anti-invariants is written S (V)~".
It is a free module of rank 1 over S (V)" generated by the element
d= ][] yeSy(¥). The corresponding “anti-averaging” operating 1is

yed +

1 — _1_ — I(w) .
I AR A

2. DEMAZURE’S BASIS THEOREM
Let ¢ : S(V) > Sy, (V) ® R denote the projection map. We begin by

defining certain operators on S (), whose composition with ¢ should be
thought of as algebraic models for Bruhat cells. To do this one must view

| the homology as a real functional on the cohomology via the usual pairing.

The operators also admit an analytic interpretation [21]. As above, let
(W, S) be a Coxeter system and (4, 2) a geometric realization of it.

Definition 2.1. If a.e A, define 4, = o~ ' (1—s5,) as an S (V)"-endo-
morphism of S (V). (Note the division is legitimate since s, is the identity
on the ker (x) = «*; thinking of « as a linear form x> (x,o) in
y* =S, (V), of course.)

The following result summarizes the relevant properties of these
operators and the proof is routine

LeMMA 2.2. If we W,aed,u,ve S (V) then
0 wd,w !l =44,
i) 4z =0,
) s, =1-—oad,,
(iv) ker (4,) = S(V)®® (where the superscript denotes invariants)
v) A4, (wv) = 4,Wv + s,(w) 4, (),
i)y 4,Iy) = Iy,
(vii) [4,, o*] = 4, 0% — w*4, = (¢°, w) s, ,
where w* denotes the operator multiplication by .
We now define /A y to be the subalgebra of the algebra of endomorphisms

End (S (V)) generated by the 4,’s (xed) and o*, w e S (V). Note 4, de-
creases the grading by (—1) and W = /\ y by (2.2 iii).
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