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SCHUBERT CALCULUS OF A COXETER GROUP

by Howard L. HILLER ')

INTRODUCTION

Let (W, S) be a finite Coxeter system, in the sense of Bourbaki [6]. It is
well-known that W can be realized as the Weyl group of a (possibly non-
crystallographic) root system 4 in a real Euclidean space V' of dimension
n= |S | This space possesses a basis ¥ of simple roots such that the
reflections s, through the hyperplane perpendicular to « € X precisely yield
the generating set S. In this fashion, W admits a natural representation
on ¥, so we can make it act on the polynomial algebra S (V) on V by
w.f(x) = f(w™'x). The invariant subalgebra splits up into its homo-

genous components S (V)Y = @ S, (V)" and the positive components
ji=0
generate a graded homogenous ideal I;;. We can form the quotient algebra
Sy = S (V)/I, which we refer to as the coinvariant algebra of W. Of
course, Chevalley’s theorem [8] tells us that S (V)" has n algebraically
independent generators whose degrees dj, ..., d, (the fundamental degrees)
are useful in describing the gross structure of Sy. In particular, one can
compute the Poincaré series of Sy = @ Sy ;
J

n

PS(Sy,t) = Y, dim (Sp )t = [] (L+14...4+t%7)
=0 R

i=1

so that the real dimension is PS (Sy, 1) = [[ d;, = |W]|and Sy, ; = 0,
i=1

j > deg (PS(Swp) = 2. (d;—1). Note that the last sum is also equal
=1
to the number N of reflections in W, for example, by a formula of Solomon
[19].
We are interested here in a finer analysis of the algebraic and W-module
structure of Sy.. Following Demazure [11], we describe a sort of algebraic

1) Partially supported by an American Mathematical Society Post-Doctoral Research
Fellowship.




58 H. L. HILLER

Bruhat decomposition for Sy relative to a root system for W (section 2).
By this we mean an algebra Hy, is constructed with a basis {Xw} wew and a
map ¢ : S (V) - Hy, that induces an isomorphism Sy &~ H,. The basis
depends on the relative lengths of the simple roots. In the case where W is
a Weyl group, and the lengths of the roots are chosen to make the Cartan
matrix integral, the element X, corresponds to the cocyle dual to the
Ehresmann-Bruhat cell decomposition of a certain flag manifold G/B = K/T.
Hence, for example, the Coxeter group X, | Z, admits the two different
Schubert calculi of type B, and C,. In addition, the map ¢ above corresponds
to taking the first Chern class of the line bundle associated to a character
of T (where V is thought of as the character group X (7)) on the maximal
torus). Our first task is to describe a section for the map ¢ (section 3). We
think of this as a Giambelli formula for Sy, This leads us to introduce a
notion of fundamental weights for a Coxeter system, which turns out to
yield the 1-dimensional generators X, o€ Z. This allows us to view an
arbitrary X,, as a polynomial in the X ’s.

In section 4, we look closer at the multiplicative structure of Hy. By
our Giambelli formula, it suffices to understand multiplication of X,, by a
fundamental weight. Here we exploit a commutator computation of
Bernstein, Gelfand and Gelfand [2] to get such a Pieri formula.

It is possible to relativize the above results. In section 5 we recall the
basic facts about the lattice of parabolic subgroups {WQ} p = s of the Coxeter
group W. Of course, (W,, 0) 1s a Coxeter system itself. We consider the
invariant algebra H;, ° and show that it is generated by {X,}, e where W°
is a familiar set of coset representatives for W, in W.

Finally, using the results of section 5 and the parabolic 2, X X, < X,
= W (A,+,-1) g¢ give an algebraic derivation of the classical Pieri formula
of the Schubert calculus of a complex grassmannian.

Section 1 is a brief review of facts about Coxeter groups we will require
in the sequel.

We note in passing that the sort of results described here have already
been analyzed from a variety of viewpoints—the Chow ring [12], Lie
algebra cohomology [17], and De Rham cohomology [22], to mention a
few. The advantage of our method, inspired by [2] and [11] is that once
one has identified the algebra in question as the coinvariant algebra S,
all of the Schubert machinery follows in a purely formal fashion.

It is hoped that an extension of this circle of ideas to affine Weyl groups
will shed some light on the Bott decomposition of the loop space of a Lie
group [15].
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1. COXETER GROUPS

We begin by reviewing some of the elementary theory of Coxeter groups.
Some detail is included to avoid any oblique use of the crystallographic
condition. Following Bourbaki [6, IV] we say (W, S) is a finite Coxeter
system if W is a finite group given by the presentation (s; € S I (s;s)" W = 15
where m;; is the order of s;s;. It is possible [6, V] to construct a real
Euclidean space ¥ and a root system (4,ZX) in V that “geometrically

realizes” (W, S). By this we mean the following. If y € 4 then

: o _ 2
5,(x) = x —(x,7)y <co root y o, y))

is the reflection through the hyperplane perpendicular to the root 7y, and
we can form the subgroup W (4) of GL (V) generated by the s.’s, y € 4.
In fact, the 5,’s, o € ¥, generate W (4) and we call the pair (W (4), {s, :0€X})
the Weyl system of (4, X). Coxeter [9] proved that the Weyl system is always
a Coxeter system and if this pair is isomorphic (in the obvious sense) to
(W, S) we say (4, X) is a geometric realization of (W, S). Of course, the
choice of such a (4, X) is not unique. But clearly up to a rigid motion of V,
the root system is determined by the lengths of the simple roots.

If the lengths can be chosen so that (x, f*) e Z for all o, f € X, we say W
is crystallographic (or a Weyl group). Geometrically, this means that the
Z-lattice generated by X is preserved by W. As mentioned in the intro-
duction, even this choice of relative lengths is not necessarily unique.

We can choose a vector ¢ € ¥V, such that (¢, «) > O for all x e 2 (i.e. # is
in the fundamental chamber C). This vector decomposes the roots
A= A" ][] 4~ where

AT = {yed:(y,1) > 0}

and A~ = —A%. Note that |A+ I = N = —%—lzj l, where N is the number
of reflections in W as described in the introduction.

It is now customary to attach an edge labelled graph to (W, S) called
the Coxeter graph. The nodes correspond to the elements of S and s, is
attached to s; by an edge if m;; > 3, and if also m;; > 3 the edge is labelled
with the number m;;. In 1934, Coxeter [9] classified the Coxeter groups
with connected graphs and showed that every Coxeter group is a product
of the “connected” components. The classification of the irreducible
Coxeter groups along with the fundamental degrees is
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TABLE
w Coxeter graph dy 5 ..., dy
A, @ ¥ g o o o B -y 2,3,.,n+1
B, & - P o 0 o -—-.-—i-. 2,4, ..,2n

Eg e ¢ - * ']
Fy -——e 4 o -

G .-—6--‘

H; . 2 *- .

Hy P 54 P

I, (m) —

2,4,..,2(n—2),2(n—1),n

2,5,6,8,9,12

2,6,8,10,12, 14, 18

2,8, 12, 14, 18, 20, 24, 30

2,6,8,12

2,6

2,6,10

2,12, 20, 30

2, m

We will assume throughout that W is irreducible.

The crystallographic Coxeter groups and their root systems are well-
known and correspond up to a choice of relative lengths of the simple roots
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to the Cartan classification of simple Lie algebras over the complex numbers.
The dihedral groups are the Weyl groups of I, (m), and are the symmetry
-groups of a regular m-gon (from which it is easy to construct (4, 2)). The
group H is isomorphic to a product of Z, and an alternating group on
five letters and H, is the symmetry group of a certain 4-dimensional poly-
tope [9, 10].

The primary piece of structure available on a Coxeter group is the
length function | : W — N, where [ (w) is defined as the minimal length of
an expression of w in the generators S. If /(w) = k and w = 5 ... 5,
s;€ S, we call this a reduced decomposition of W. There is an alternative
intrinsic description.

LemMA 1.1. Let I',, denote the setof ye A" such that w(y)e 4™, then
Q) | T, | = |Tw]| £ 1 if and only if w(2) € 4%,
(i) I(w) = | T,
(iil) I (ws,) = I(w) + 1 ifand only if w(x)e A=,

>

Proof. To see (i) one need only recall that I'y = {oc}. This first assertion
then implies | r, l < I (w). The other inequality follows from an induction
on | r, l and then (ii) follows. (iii) is immediate from (i) and (ii).

The next piece of structure on the Coxeter group we require is the so-
called Bruhat ordering [13]. We define w’ — w (intuitively, w’ is an im-
mediate predecessor of w if there exists a positive root y such that
o,w = w'and [ (W) = [ (w) + 1. (We will often adorn — with the unique
such 7.) Since W is transitive on the roots and ws, w™! = Sy(ay the first
condition is equivalent to w’ w~! being a conjugate of a fundamental
reflection s € S. The Bruhat order < on W is the transitive closure of the
ordering —. Note that / is forced to be strictly order-preserving so that the
two pieces of structure we have introduced are compatible. We can now
relate — to any particular reduced decomposition of w.

Lemma 1.2. If w = §4...8, is a reduced decomposition, then w' — w
A

only if w' = w} where w} = s;..5;...5, (and " denotes deletion).

Proof. See Theorem 1.1 (ITT) in [13].
Hence, in general, the Bruhat ordering corresponds to the subwords of
any reduced decomposition. So, for any i we can find a y € 4" such that

s, ws = w. The next result describes these roots y both specifically and
abstractly.
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LEMMA 1.3. If w = s{..58 is a reduced decomposition, define
0; = 51 ..85.1 () where s;=5,,0,€X. Then the following sets are |
equal |

@) Iy_y =47 aw(d?),
(i) 01 2o,
(iii) red™ s, w = w}.

Proof. (i) < (ii). Let ye A" and w™ ! (y)ed~. Let j be the smallest
number such that s;...s5; (y)e 4™. Then o; = 5;_4 ... 5; (7). Hence y = 0,.
(i1) < (iii). It suffices to compute
So; Wi = Sgp e s;_, () (Sg onn 85000 skz\
= S1 e Si'-l Si Si—l oo Sl (Sl o Si oo Sk)

= Sl‘“Sk = W.

But now |I,_,|=Iw ')=1I(w) =k by (1.1) and certainly
| {red® :s,w} = w} | <k, so all three sets must be equal. |

Remark. Though the 0,’s are defined in terms of a reduced decompo-
sition, (1.3 1) shows that they are actually independent of the choice made.

We now recall that the Bruhat order on W possesses a unique top
element of greatest length.

LEMMA 1.4. There exist a unique element wy e W such that [ (w,) = N.
In addition, wy > w, forall we W,wi = 1 and 1(ww,) = I (wo) — I (W).

Proof. One knows that W acts simply transitively on the chambers and
Wwo 1S chosen to be the unique element satisfying wy, C = — C. The rest is

standard, see [6, p. 43].
Finally, we make some remarks on the (anti) invariant theory of Coxeter

groups. The main result is

ProrosiTiON 1.5. If (W, S) is a Coxeter system, then the invariant
algebra S (V)Y has | S | algebraically independent generators of degrees
2=d,,d,,..,d,. Equivalently, S) is a free S)"-module.

Proof. This follows immediately from Chevalley’s theorem [8].

Remark. 1t is often useful in this context to think of W as the Galois
group of the rational function field S (V) over the rational function field
S (V)7 of the invariants. We exploit this point of view in the next section.
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There is also a theory of anti-invariants, i.e. polynomials u € S (V) such
that w - u = (—1)* 4. The algebra of anti-invariants is written S (V)~".
It is a free module of rank 1 over S (V)" generated by the element
d= ][] yeSy(¥). The corresponding “anti-averaging” operating 1is

yed +

1 — _1_ — I(w) .
I AR A

2. DEMAZURE’S BASIS THEOREM
Let ¢ : S(V) > Sy, (V) ® R denote the projection map. We begin by

defining certain operators on S (), whose composition with ¢ should be
thought of as algebraic models for Bruhat cells. To do this one must view

| the homology as a real functional on the cohomology via the usual pairing.

The operators also admit an analytic interpretation [21]. As above, let
(W, S) be a Coxeter system and (4, 2) a geometric realization of it.

Definition 2.1. If a.e A, define 4, = o~ ' (1—s5,) as an S (V)"-endo-
morphism of S (V). (Note the division is legitimate since s, is the identity
on the ker (x) = «*; thinking of « as a linear form x> (x,o) in
y* =S, (V), of course.)

The following result summarizes the relevant properties of these
operators and the proof is routine

LeMMA 2.2. If we W,aed,u,ve S (V) then
0 wd,w !l =44,
i) 4z =0,
) s, =1-—oad,,
(iv) ker (4,) = S(V)®® (where the superscript denotes invariants)
v) A4, (wv) = 4,Wv + s,(w) 4, (),
i)y 4,Iy) = Iy,
(vii) [4,, o*] = 4, 0% — w*4, = (¢°, w) s, ,
where w* denotes the operator multiplication by .
We now define /A y to be the subalgebra of the algebra of endomorphisms

End (S (V)) generated by the 4,’s (xed) and o*, w e S (V). Note 4, de-
creases the grading by (—1) and W = /\ y by (2.2 iii).
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There is a map ¢, : End S (V) —» S (V)* obtained by composition with

¢ and we write ZW =&, N\w S S(V)*. Double duality over R gives a map

0 i*

c:S(V) = S(V)** = g .

We will write Hy = Ay, christened by Demazure, the cohomology ring of
(4,2) and c¢ the characteristic homomorphism. Demazure [11, Prop. 2]
makes the basic observation that ¢ induces a unique graded algebra and
W-module structure on Hy compatible with S (V). (We should mention
here that H, depends on the lengths of the simple roots though the notation
obscures this.) The first task is to extend the class of operators 4, = 4,
from S to the entire Coxeter group W. Naturally, we will define
4, = A, ... 4,, where w =5, ...5, is a reduced decomposition of w,
once we have proven that this definition is independent of the choice of the
decomposition. Our information on Coxeter groups is a possible route
but instead we follow Demazure’s argument since it leads to worthwhile
dividends. We begin with a few lemmas.

LEMMA 2.3: Let d denote [] o€ Sy (V). If Wy = S, «n Sqy IS

aed +

the longest word then
A,00...04, =d7H((=D¥wo + Y q,w)

wFE W
where g, € S (V).
Proof. We compute
Ay oo Ayy = 07 (1 =5,) oo oyt (1 =5,
= (=DVoaitsyoartsy+ Y, a(w)w
w # wg

where the index of summation in the last term is a consequence of (1.4).
It now suffices to watch in the first term what happens to inverted roots
a; ' as we pass the fundamental reflections s; over to the right. Using

il

(2.2 1) we get
(=D TT Sag e Saymy ()75 Sy vve Say
i=1
But by (1.3) this is (—=1)Yd~! w, since wy' = w, converts all positive

roots into negative roots by (1.4). We now let ¢,, = da,, and the proof is
complete.
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LeMMA 2.4. If feEnd (S(V)) reduces the grading by N then
d-f= AJ for some LeR, where J = ) (- 1)) w,

weW
Proof. See [11, Prop. 1 (b)].

— -1
PROPOSITION 2.5: If Wg = Sy . Sqpy S above,then A,y ... Ay = d="J.

Proof. By (2.4), dAal il = AT = A=) e+ Y (DI Aw.

wE w

Also by (2.3) d4,, .. = (—D¥wye + ) g, w. By Dedekind’s

wF wg
theorem (see, e.g., [1]) the w’s are independent as automorphisms of

S (V), so A = 1 and the result follows.
We can now show

PROPOSITION 2.6. A4,, is well defined.
Proof. By [6, IV.§ 1, Prop. 5], it suffices to show
AazAﬂAa o AﬁAaAB e

with m,, terms on each side. But the dihedral root system I, (m, g) Or
Ay X Ay has §,858,... = SpS, 8, ... as its longest word and hence (2.5)
completes the argument.

THEOREM 2.7. The {Aw} wew are an S (V)-basis for |\ y and hence the
{e0 4,}yew are an R-basis for |\ y.
Proof. By (2.2 v),it is easy to check the 4,’x generate /\ » as an S (V)-

module. The linear independence follows from Dedekind’s theorem, and
the last statement is immediate.

We now define {Xw} wew to be the basis of Hy, = Ao \ w dual to the basis

{e+ 4.} yew of A w, ie.
Xw (8 ) Aw’) v=

This immediately yields the following “coordinate-wise” description of c.

cw =Y ed,@X,

weW

First, we show ¢ has the correct kernel. We need the following Lemma that
follows from R. Steinberg [21].

LemmaA 2.8. If I is a graded ideal of S (V) such that Iy = I and
RdnI =0, then I = Iy.

L’Enseignement mathém.. t. XXVII. fasc. 1-2. 5
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This result rapidly yields our version of the “basis theorem” of the
Schubert calculus, namely

THEOREM 2.9. Ker (¢) = I, and c induces an isomorphism Sy ~ Hy.

Proof. For the first assertion, by (2.8), it suffices to compute

c(d) =AY A, ()X, = Ad,,(d)X,,
= 2| WX, .

Finally, ¢ is clearly onto by construction.
In the next section we will work on producing an explicit section for c.

Remark. Demazure’s proof, though restricted to Weyl groups, is done
integrally. In that situation, ¢ is not onto, and Demazure computes the
order of the finite quotient. It corresponds to the usual notion of torsion in
Lie groups [3, 5]. Indeed, the point is that only when W preserves some
integral lattice can one hope to carry out an analysis in integral cohomology;
in the general case we must resort to real cohomology, as we do here. Of
course, the torsion problems then disappear.

3. GIAMBELLI FORMULA

We begin with an easy lemma.

LemMmA 3.1. 4 is quasi-multiplicative, i.e.

y Ay if Lww’) = 1(w) + 1(w')
v {0 otherwise.

Proof. The first clause is immediate since the conditions implies that
reduced decompositions of w and w’ can be juxtaposed to yield a reduced
decomposition of ww’. Now suppose w = s, w’ and [(s,w') = [ (W) — 1
(that this is the only possibility that follows from (1.1)). Then w' = s, (s, W)

and
I(w) =1+ (l(w’)—l) = I(s,) + I(s,w)

so by the first part 4, = 4, A4, But
0 = AsaAsaAsaw’ = AsaAw’

by (2.2 ii) and induction on / (w) completes the proof.
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COROLLARY 3.2. & 4, 4,,-1,, = Syt Ay 01 Sy (V).
Proof. If w' = w, then by (1.4) and (3.1)

A, 4,1, = 4y,
and the result follows.
We now need only consider w # w, but with I (w) = I (w’), (otherwise,
we are done for dimensional reasons). Thus

L(w) + L(w™ wg) = L(w") + (I(wo) =1 (w)) = 1(wo)
and
L(w' w™twg) = I(wg) — L(w'w™) # [(wy)

So by (3.1), 4,,- 4,,- lw, = 0, and the proof is complete.
It is now easy to dualize this to the following assertion:

d
CorOLLARY 3.3 (Giambelli formula). ¢ <Aw—1w0 (—)) = X,. Hence

| W
in particular, c|{—— ) = X, .
| W 0

d
pro e (v )) = 2 "( 07
weW
d

=y b (l

weW
Lw') = 1(w)

=X, by (2.5).

d
Note that the map o : Xwn—>Aw—1w0 <|> is a vector space section

| W
for ¢. In the remainder of this section we will find other I,-equivalent
expressions for XWO and use these to put ¢ in a more manageable form.

We will call X W, the fundamental class of the cohomology ring Hy,.

Example. Let W = W (A,_,) = 2,. As usual, the positive roots A4~
are {e; — e; :i < ;} where {e;} is the standard basis of R". Hence, the
fundamental class is ¢ of a multiple of the Vandermonde determinant, namely

2 n—-1
1 e, e, ... €,
2 n—1
1 1 en—l en—l en—l

S
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In this example we used the standard basis for V. The following result
indicates that a Coxeter generalization of the fundamental weight basis is

more appropriate in our situation. Recall the fundamental weights {wa} s

are given by the requirement

(CO“ s ﬁv) = 50:/3
We now have

Lemma 3.4.

(i) Aﬂ(a)a) =2 5aﬁ,
(i) cl0) =X,,

(i) c@ = 5 (@p)Xs,.
Proof.
(1) Aﬁ (a)a) = ﬁ—l (a)oz — Sp (wa)) = ﬁ_l (wa — (wa - (CUa, ﬂv)ﬁ))
= (waaﬁv) = éaﬁ
(i) (o) = 2 ed, (@)X, = ) dp(o0)X,;=X,
weW feX
(i) Since a = ), (a, f*) w4, the result follows immediately from (ii).
BeZ

This result tells us that if we can write X, as ¢ of some polynomial in
the {a)a} wez OT {oc} «z We will have also written X, as a polynomial in the
X,s. We will often abbreviate the Cartan matrix entries by ¢, , = (a, )

oL 7T
= — :: 5 :: CoS ( ) . In practice, it is maximally efficient to write X, as
Wlaﬂ

a polynomial in the simple roots, since then an easy substitution will yield
either a polynomial in the weights or a polynomial in the original co-
ordinate variables ey, ..., ¢,.

It is possible to relate the fundamental class % O with the invariant

theory of W.

ProrosiTiON 3.5. Let fy,....f, be fundamental invariants for W.

0x;

of.
Then, if J = det (—fl> is the Jacobian of these polynomials there is a real
number A such that
c(A) =X, .

Proof. This followé from the stronger, well-known assertion that d
divides J [20, p. 85]. (It also follows from the theory of complete inter-
section rings.)

|
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In the interest of understanding the Giambelli formula (3.3) we deduce
some formulae for 4., (d). If {oci} 1—i are distinct positive roots we denote

by d,,.,,, ., the product d - ]_—[1 a7 = [] o Itis easy to see

aed
aFa;

LemMA 3.6.

[ Aspayy s spam, 8 B = o

Sﬂ (dal, cers an) =

Proof. Since s, permutes the set 4™ — {f}, it also permutes

A7 - {ﬁa Ags ooy Ly S'p (061), s S g (a")} 2

where f # «;, for all /. Hence

1 _dsﬁ (@) 5 e s S (an) otherwise.

2 2
Sp (dal,...,an) = S (dﬂ,al,...,ozn, sp (@1 s Sp (an)) Y (B) - Sp (¢;)0...0 Sg ()

= dﬁ,al,...,an,sﬁ(al),...,sﬂ(an)'(_/))) 7 SRR s M

= —dsﬂ (@1), . sp (@)

Similarly in the other case.

ProposiTION 3.7.

— 1)!sl .
( 1) 1—[ Cas, B
s#E ¢ ies
A
se{l,..,j,..,n}
‘BISI—ld, , R
{ai:Les},sﬁ(al),..,sﬁ(aj),..,sﬂ(an)
Aﬂ(dal,..,an) = lf‘ﬂz O‘j
dala--aarpﬂ + dSﬁ(al),..,Sﬁ (an),ﬂ

otherwise

Proof. The second case is easy so we look at the first
—_——
— =1
AB (dazl, s “n) - ﬁ (dal 5 w5 Oy _dSp(dl), Y (aj), e, Sﬁ(“n)s ,B)

—

-1
- ﬁ [dal,...,an, sﬁ(al),...,sﬁ(aj),...,sﬂ(an)

—

(spog) o spog) sy () — oty

———

= d

Xgseesps Sp (Otj), s Sg (aj), s ,sﬂn(a)

p~! ( ll;lj (O‘j_(o‘jaﬁv)ﬁ)_ H O‘i)

i#j

and after writing the product as a sum the desired expression follows.
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It is possible to use (3.7) to explicitly compute polynomial expressions
for X,.

Example. Let W = W (A4,) where A, is the root system in R*® with
simple roots X = {x = e; — e,, f = e, — e;} and the additional positive

1
root « + f = e; — e;. Hence Xwo = i o B (a+p). As a check of this we

compute the Jacobian J of the fundamental invariant. Recall

01 = —(exte3)(extes) +eye;
and
o, = —(epte3)es ez,
where we have eliminated e; = — (e, +e3). Then:

J = 3(9593“3%32) + 2(93—93) =d,

1
so also, XWo = 3 J. Now by (3.7) we can compute
A, (2) = tay =
o g =E( a)_EAB(OC+ﬁ)

and
a\ 1 (g J 1 1
4, 4, 3 =§(A,3da)) = §( apT sg(a),ﬂ) =z (@+f+a) = 3Q2u+p)

so that:
X, s =3B@+p and X, = Q¢+ = o,

as one easily checks.

—1
Now since the Cartan matrix is (_1 2) we have
o = 2w, — Wy

so for example

= %("Xsa"'-sza) (Xsa_‘_XsB)
_ 1, y2 2
— 3( X”S“a_l_XSﬁXsa_I—ZXsﬂ)

Sa S

which will be confirmed further in the next section.

Remark. In the crystallographic case, it follows from the Weyl deno-
minator formula (see [6, p. 185], [2, p. 17]) that
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d pN
I_VFI = (mod I )
 where p is the sum of the fundamental weights. Hence one can attempt to
compute the operators 4,, on p”.
It is possible to develop such formulae and we hope to treat them else-
where. In particular, one might want to conjecture in the general case that
p" ¢ I, maybe even for all p in the interior of the fundamental chamber.

4. PIERI FORMULA

Recall that the algebra of operators /\ 4 was generated by both the
4,s and the multiplication operators w*. Using the basis constructed
in (2.9), if one composes such operators, say w* o 4, or 4, 0 w*, it
should be possible to express them linearly in terms of the operators 4,,
g € W. Of course, our eventual concern is with the algebra /\ , and

cow* A, =0.

So, if we compute the commutator [4,, w*] a quick application of & will
yield a formula for ¢- 4, 0 w*. Here we are following the strategy of
Bernstein-Gelfand-Gelfand [2]. Essentially, this result is our Pieri formula
disguised in its dual form.

In order for the techniques of section 1 and induction to be easily
applicable, we work with the slightly modified operator w™! 4, (recall
W < /\ ). The main result is

THEOREM 4.1. If we W,we V*, thenin End S (V),

[wid,,0*] = Y (W', o)wld, .
Y
w o— w

We will now fix a reduced decomposition w = Sqps s Sy, and write
s; fors,,; and w; = s, ...s,.. First we have the following easy observation.

LEMMA 4.2. Let 0; = s, ... 8,01 () = w;pq (@), 1 <i<k. Then
i) w4, = Ay, dg, ... 4y,
and
(i) 5o, (WD) = W

Proof. Note by (2.21i, iv) s, 4, = A,. Hence
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-1 _ —_
w A, = s...504,, ol = A sy @) Sk

A4

ay v Aoy

s, 4 4,

ay e x

= Ael W2A

and induction completes the argument. The second remark follows precisely
as in (1.3).

Proof of (4.1). We compute
[w™'4,,, @*] = [4y, 0...0 4, , 0*]
k
- .iZ"1 Aoy - Aoy [4op 0F] ... 4g, -

Let us call the j-th summand P;. Firstly, observe that [4 055 w*] = (05, w) Se;

by (2.2 vii). If we substitute this into P; and drag the reflection Sg; OVer to
the left we get

Pj == Agl ...Aoj_l[Aoj, (J)*] A0j+1 ...Ae

k
v
= (91, w)Aol.‘.Agj—ISBjAej—!—l“'Aek
— J
= (Qv, CO) SOjASGj(Bl) » 1o3 o ASOj(Bj—l)Aoj—}—l ...Agk

= (05, ) sy, (W?rlAwf,-‘ '

To see this final identity we must argue, by (4.2), that so.(0;) = £ 0,7

where 0; 5 = S ... 5; ... §;4 1 (¢;). (As in the above remark, 0; 7 is the 0, for
A
W} = §1..5;..5.) But, we can assume i < j, in which case
ng(ei) = Spoees Sj+1 Sj Sj+1 e Sk(Sk N Sij+1 vee Si4q (O(i))

A
= sk...sj...si+1(06i) = ei,/j\

And now, by (4.2 ii)
P; = (05, w) w“lAw?
w,]\'(Gj)
and Sw; o)) (w}) = w, so w} —— w. Finally, (1.2) allows us to reindex
by the immediate subwords of w

_; Pi= ) (W) o)w 4,

and the proof is complete.
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COROLLARY 4.3.

A, 0* = w-o* - wld, + Y (W)W o4, .
b
w— W

Proof. Multiply (4.1) by w.

COROLLARY 4.4.
S‘Aw.w* = Z ((WI)—I(yv)a w)g'Aw’ .
?

w— w
Proof. The first term in the right-hand side of (4.3) is annihilated by e.
It is now easy to dualize the above and obtain

THEOREM 4.5 (Pieri formula). If we W, o€ 2, thenin Hy

X, Xy = Y (wHO), w)X,,
w—-y—)w’

Proof. Choose A4 such that ¢-4,. (4) = o, for example o (X,).
~ Then, by (3.4 1i)

X, X, =clw, 4)
= Y ed, (0, X,

weW
= Y e dyo,(A)X,
weW

= > (X (g—l(y)”,a)a)soAg(A))Xw,

weW g—> w

= 2 yZ (071 ()", @,) 5g) X o

weW g — w’
= 2 (WO w)X,
?

w— w

Of course, it is also possible to rewrite this formula in the following
equivalent form.

COROLLARY 4.6.

X .XW = z (ﬁvn a)a)stﬂ

s
* fed
L(wsp) =1(w) + 1

s
w

/

Proof. 1t suffices to note o, w = w' if and only if w Oy=1¢y = W.




74 H. L. HILLER

Example. Recall that in Hy, we computed

1 2 2
X =§(_Xsa+XsﬁXsa+ 2Xsﬂ) :

Sa Sﬁ
By (4.6), one can compute

X, =X

sﬁsa
XSBXSa = XSﬂ Sa + Xsa Sﬂ
2
XSﬁ = Xsa SB

and this confirms our earlier computation.

5. Hy AS A W-MODULE AND PARABOLICS

If (W, S) is a Coxeter system and 0 < S then (W,, 0) is also a Coxeter
system [6, p. 20] and W, is called a parabolic subgroup of W. In addition,
it is easy to see that a geometric realization (4, %) of (W, S) can be restricted
to a geometric realization of (W,, 6). The collection {WG}OCS of parabolic
forms a lattice of 2!S! distinct subgroups where, for example, W, N W,
= Wyn,.. We will eventually be concerned with the set of left cosets of W,
in W. We define W° = {we W :[(ws) = [(w) + 1 for all s€6}. The
following basic result is well-known [6, p. 37 and p. 45].

THEOREM 5.1. Every element w of W can be uniquely expressedas
wl - wy, with wle WO wye W, and furthermore [(w) = I (W°) + I(w).

This immediately yields

COROLLARY 5.2. W*° is a complete set of left coset representations for
W, in W and furthermore provides an element of the coset of minimal length.

In this section we analyze the subalgebra Hy® of Wy-invariants in Hy.
The most straightforward approach is to compute exactly the action of W
on Hy,. This is easily done by exploiting the computation (4.1).

THEOREM 5.3. The structure of Hy as a W-module is given by

X, : if I(wsy) = 1(w) +1

Sa

(
|
[ X, — Y (s L)X, if I(ws) = I(w) — 1.

4
WS, —> w’
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Proof. As in (4.5), choose A4 such that ¢ 4,(4) = J,,. Then, since ¢
| isa W-map

San = C(SaA) = Z 8Aw’(sazfl))(w'

weW
= Y ed,(1-a*4)(ADX,,
weW
= Xw - Z (8Aw'a*) Aa(A)Xw’
wo#Ew
=X,— Y (9770, a)edy (DX, by (4.1)
b
g —> w

= (97 (), 2)X,,

g — w
L(gsy) = 1(g) + 1
gsy = Ww
= Xw - Z (Saw—l (Y)ua O‘)Xw’

Y

’
Wsa—-)w

Note, that the summation in the next to the last line is non-vacuous if and
only if / (ws,) = [ (w) — 1. This completes the proof.

COROLLARY 5.4. X, e Hpyo if we WP,

Proof. Immediate from (5.3) and the definition of W°,

The following elementary result shows that the X,,, w e W, are actually
an R-basis for H .

LEMMA. If a finite group G acts on a real vector space V via the regular
representation and H is a subgroup of G, then
dimg (VH) = [G: H].
Proof. Let {e,}, be a basis for V, so that

, . —
g "€ = &y

Then if y = ) ¢&,eVH we claim &, = &, if g = g’ (mod H). Indeed,

geG

ifg = g’ h, he H, then
¢, = coeflicient of ¢, y in
= coefficient of ¢,, in A™1 y-

= coefficient of e, in y

= ¢,
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Hence, there are at most [G : H] free parameters in determining y e V¥
and clearly each choice gives an invariant. This finishes the proof.

COROLLARY 5.6. dim (Hy®) = [W: W, = |W°| and the X,
we W°, are an R-basis for Hpo.

Proof. Chevalley [8] has shown that S}, hence Hy, is abstractly
equivalent to the regular representation of W, as a W-module. Hence,
(5.5) applies and the result follows.

It is now possible to “restrict” the Pieri formula (4.5) for Hy, to Hpy®.
We have

THEOREM 5.7. If w,w' e W° andin Hy

X, Xy = > cw,w,w)X,.

then in Hp,o wrew
X, X, = > cww,w)X,

w” e w0

Proof. One need only observe that the vector space map r : Hy — Hpyo

given by
X, ifwew*
r(X,) = .
0 otherwise

is a retraction. Then, applying » to both sides of the first equation yields
the second equation since the invariants form a subalgebra.

This result will be useful in the next section for computing inside the
algebra of Wy-invariants. Notice that an appropriate Giambelli formula
for HJ 0 is not as easily obtained. This is because the Giambelli formula
for Hy, gives X,, as a polynomial in the X, ’s and not all of these are in the
algebra H}0, so this is not quite the right thing.

6. APPLICATION:
THE COMBINATORICS OF THE CLASSICAL PIERI FORMULA

In the last section we saw that given a pair (W, W,) of a Coxeter group
and a parabolic subgroup, one could construct a formula to describe the
multiplication of Schubert generators in the invariant subalgebra H} 6. In
this section, we examine the particular case (2, ., 2, X 2,) where 2, denotes
the symmetric group on m letters. Indeed, 2, is the Weyl group of the
root system of type A4,,,- 1, which we recall briefly here. Let V' = R"**
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equipped with the usual inner product and let ey, ..., e,., denote the
| standard basis. X,., acts by permuting these basic elements. This action
| is effective on the (n+k — 1)-dimensional subspace

n+k n+k
:{ Z /L-eit Z j,l:O }
i=1

i=1

- and it is easy to see 4 = {e; — ej} j+i can be chosen as the corresponding
root system. In addition, the simple roots 2 = {ei — e, 1} {—ien+k—1 and
the positive roots 4% = {ei — ej}i< j» induce the usual transpositions of
the basis vectors.

The main result of this section is the identification of the Pieri formula
for Hs Ekx z " with the classical Pieri formula (see [7, 16]).

We begm with a rapid review of Chern’s Schubert calculus for the co-
homology of a complex grassmannian [7]. Let G, (C"*¥) denote the space
of k-dimensional complex subspaces in C"**. This is a compact, smooth
manifold of dimension 2nk. Ehresmann [14] described a cell-decomposition
for G, (C"**%) (along with other algebraic homogeneous spaces) whose cells
are identified by certain Schubert symbols (d,, ..., d;), where

l1<d, < ... <d, <n+ k.
Each symbol yields a cohomology class {(d; ... d,> of dimension

k(k
5 Z (d—l)-(Zd)——(—-{;l)

i=1 i=1

Geometrically, {d,, ..., d,) is the cocycle dual to the cell
[dy,...nd] = {X €G,(C"*: dim (XAR") > i)
It is easy to see the d;’s describe the “jump-points” in the sequence
0 < dim (XnC") < dim (XnC?» < ... < dim (XnC"* ) <n + k

where 0 = C' = C? = ... = C"** is the standard flag determined by the
coordinate axes.

On the other hand, G, (C"™*) can also be profitably thought of as the
homogeneous space G/P where G is the complex Lie group GL,,, (C) and
P is the maximal parabolic subgroup of the form

GL, (O *

0 GL, (C)
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If K denotes the maximal compact subgroup U, ., of G then we also have
the identification G, (C"*%) = K/(U, % U,). |

More generally, one can consider a complex semisimple Lie group G .
and a parabolic P, in G corresponding to a subset 0 of the simple roots X. |

The homogeneous space G/P, has been studied by various authors and |
we will assume known that ‘

H*(G/Py;R) = H*(G/B;R)"

(Sp)"®

This will be the basic topological input [2].

Now we fix G to be the Lie group of type 4,,,_; and 0 = ¥ — {ock}
(where we write o; = ¢; = ¢;4; and 5; = s,)) so that G, (C"*" = G/P,.
We begin with some easy length computations.

lIe

1

LemMA 6.1. If we W, then

I(ws;) = 1(w) = pi; (21 1;, ;1 +1)
where
b = { +1w(@) < w())

—1w() > w(j)
and

I; = {i<z<j:w(z)is between w (i) and w (j) } .

In particular, [(ws;;)) = [(w) + 1 if and only if (()w(@) <w(j) and
(ii) there are no intermediate w-values, i.e. I,; = ¢ (we often abbreviate
this pair of conditions by w (i) < < w (j).

n—1

Proof. Recall the length function on ), ;. is given by [ (w) = ) ¢; (w),
i=1

wheree; = ] {i >jiw (@) < w())} l, the number of inversions of w. Hence

[(ws;;)) — l(w) = (e —e) + (ej,—ej) + ) (e, —e,)

i<z<j
where ¢, = ¢; (w) and ¢, = ¢, (ws;;). Certainly, right multiplication by
s;; does not affect the values of ¢, below 7 or above j. Also
e, =e¢ +|{i<z<jrw(@)<w()}| =e¢ +e
ef = —|{i<z<j:w(@)<w()}| =¢ —&
so we get ’
(e;—e) + (e, —e;) = (e;+e—e) + (e,—e—¢))
=e—e = pi,j(lli,j|+1)
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It is easy to see

o — o = pi,; ifzel;
z z 0 otherwise

putting this all together we get the result. The second assertion follows
- immediately.
We can now write down (4.6) for Hy,, W = > 44

PROPOSITION 6.2. If We Y44 1 <i<n+ k —1, thenin Hy,

Xsi'Xw = z stbt
(b,0)

where (b, t) satisfies b <i <t and w(b) << w(t).
Proof. By (4.6), X, appears with coefficient ((e, —¢,)", »;) if and only
if [(ws,) = 1[(w)+ 1. This is equivalent to the last condition by (6.1).

Finally (e,—e,)’ = e, — ¢, = a + ... + o,_4, so that first condition is
also needed and the coefficient is correct.

Remark. The Poincaré dual of this formula appears in [18, p. 265].

We now identify the set of left coset representatives WP If
1<dy<..<d,<n+kandd, <..<d, isan ordered enumeration
of the complement then we define (dy, ..., &) € Y 4k, DY

d1<i<k

dy, ..., dy) () =
(d, K (D) {di_k]<+1<i<k+”

(We also write X (dy, ..., d,) when it is convenient.)

LeMMmA 6.3.
Wo={dy,...d):1<d, <..<d,<n+ k}
and [(dy,..,d) = .Zl (d;—J).
Pr=

Proof. Clearly I((dy,...,d)s) = I(dy,..,d) + 1, for all i # k by
: k
(6.1), for example. Since | W°| = | W VARZ | = (nz— > the first
assertion follows. For the second, we need only observe

dy —j if j<k
0 otherwise.

ej(dl,...,dk) = {
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This lemma indicates how the Schubert notation arises from a group-
theoretic point of view. That this notation is consistent with the geometry
is a theorem of Demazure [12].

A Pieri formula should compute the product of X, (a linear generator, -
by (5.6)) and an algebraic generator. Since the map

S S ()"

is onto we can find algebraic generators by computing the images of W,-
invariants. In general, W, is a (reducible) Coxeter group, so we have the
fundamental invariants [20]. In our case, we have simply

SV = Z[ty, ..., 4, 61, evrs Gy

where 7; = 5;(ey, ..., €), | <i<k,ando; = 5;(€g415 s €pun)> 1 <Jj <1
and s; denotes the j* elementary symmetric function in an appropriate
number of variables. One knows ¢ (¢;) suffices to generate Hy®. So we
compute

LEMMA 6.4.

c(o) =(—-1)/X =(=-1D/X(1,2,..,k—=1,k+j)

Sk+j—1’ ...,Sk
Proof. By section 2
cloy) = ) A.(0)X,

L(w)=j

If we write 4, for 4,, then clearly 4, (6;) = 0, if # # k and

Sj(@kats eees€rrn) — Sj(€hs oves in)
A (o) = .
€ — €r+1
_ (erv1—€0) Sj—1 (psas -vs €pin)
€ — €k+1

= (=1 ;-1 (€25 -ee €k+n)

We can continue by induction and get A, ;_; ... 4, (0;) = (—1)/, while
any other sequence of simple roots yields zero.
We now proceed to a computation of

X(,2, 0 k=1, k+)) X(dy, oy dy) .

The case j = 1 is easy.
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PROPOSITION 6.5.

X(1,2, . k=1,k+1) X (dy, ..., d)
- Z X(dlb"'ﬂdi_{_l""’dk) .

i+i<diy

Proof. Since (1,2, ..,k—1,k+1) = 5, we apply the case i = k of
(6.2) and observe w (b) < w(¢) if and only if w(z) = w(b) + 1.
We now observe

LEMMA 6.6.

X, X —-X

c(0)) = 8;(Xs oy =X Xy o= X oo Sp k1)
Proof. By the tables of [6], the i-th fundamental weight is

i
n+k

COi = 61 + cos + ei - ( )O-l (81, ceey €n+k) .

Hence w; = e, + ... + ¢; (mod I,) and we get

C(O-j) = C(Sj(ek-i-la "-3ek+n))
= C(Sj(a)k+1_a)k: sy .—wn-l'k—l))
= SJ(X X cee s ’_X

Sk+1 O sg? Sn—l—k—l)

since ¢ kills I and (3.4 ii).
This suggests the following computation.

LeMMA 6.7. Forall i,k + 1 <i<k+ nweW; in Hy

(Xsi_Xsi+1)Xw = stit - Z stbi
i<t k<b<i
w (i) << w(t) w (b)) << w(i)
- b; stbi

w(b) << w(i)

Proof. Computing with (6.2), we get

i<t w (i) << w (£)

w(b) << w(t)

L’Enseignement mathém., t. XXVII, fasc. 1-2. 6
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and
KXoy Xw = Z Xosy + Z X svspi
b=i-1 b<i
i<t w(b) << w(i)

w(b) << w()

Upon subtracting and breaking up the second term the desired expression
follows.

THEOREM 6.8. In

s, (X X, ., =X YX (g, esdy) = (=1 ZX(ey, ..., e)

Sg1 Usgr o Sptk—1

where the summation ranges over (eq,...,e,) satisfying d;, <<e; <d;;q

k K
and ) e, =j+ Y d.
i=1 i=1

Proof. Of course

Sj = Z (Xstj—Xstj_l) ...(X ‘-X

N St )
k+1 <ty <. <tj=k+n 31 1—1

where we set X, = 0. It is not difficult to check that the third term of
(6.7) alone yields the right-hand side. Hence it remains to show that the
contributions arising whenever either of the first two terms of (2.7) are
involved cancel in the final summation. To do this it suffices to show that
the resulting subscripts in W do not lie in W°. (Then they must have co-
efficient zero since Hy o is a subalgebra of H,.)

Now the first two terms of (6.7) always give a transposition above
k + 1 and it must be elementary one by (6.1), say s;, i >> k. Such a trans-
position will send an element of W out of W° We claim no further -
transposition s, with either b > i or ¢ > i, will put the subscript back
in W°. Both cases are easy to check and the proof is complete. Finally, by

a substitution from (6.4) we get

In+k

COROLLARY 6.9. (Pieri formula). In H3F* *» = H* (G, (C**H))
X(I,Z, cee k—l, k+]) X (dl’ cee g dk) = ZX(el, vee gy ek)

where the summation is as in (6.8).
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Remarks 1. The above formal arguments are equally valid for the Chow
ring of the grassmann variety over an arbitrary algebraically closed field.

2. One can hope to mimick the above strategy for the homogeneous
space SO,,, 1/U,. The group G is of type B, and the maximal parabolic is
determined by the “right-end” root. It is not difficult to write out the Pieri
formula for the flag manifold of type B, (see the author’s “Pieri formulae
for classical groups”, preprint). In addition, W? for this case, can be
identified with the power set of {1, 2, oy n} and one can compute
c(0;) = 2X;;,. (The 2 occurs because ¢ is not onto.) Still the problem is
complicated by multiplicities. We hope to return to this elsewhere.
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