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48 D. LEHMANN

Théorème 2 (théorème des résidus).

F

Y RésP;l (V, <7) F + 5 -A.
X= 1

Démonstration. La définition du résidu s'écrit encore, en posant
ßi 71 — oq et en notant le nombre de sommets (ou d'arêtes) du 2-ième
pavé Px :

2% RéspA(V,0) + £ (nx - f Pgds
px x

Sommant toutes ces égalités terme à terme quand X varie de 1 à F, on
obtient:

F

Mais 2teS
* Px

Y nx 2A (puisque chaque arête est commune à 2 pavés),
x

et

Y \dP Pgds 0 (puisque les intégrales se détruisent 2 à 2,
A chaque arête étant commune à 2 pavés)

d'où
F

2n Y RésP;i(V,g) 2n(F + S — A)
x=i

C.Q.F.D.

5. Connexions métriques sans singularités

Si £PX 0, Résp (V, g) — [T Q d'après la formule locale de
JJpa

Gauss-Bonnet. Le théorème des résidus devient donc le

Théorème 3 (formule globale de Gauss-Bonnet). Pour toute connexion
V sans singularité sur une surface compacte V, respectant une métrique
riemannienne g, et pour tout pavage (Pl9 PF) de V, on a:

Q F + S — A
v
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Remarque. La 2-forme de courbure Q n'est définie que si F est orientée.

Cependant si F n'est pas orientée ni même orientable, on peut encore
F

définir globalement l'expression JJF Q comme étant égale à £ JJpa^

(voir remarque finale du § 3).

On déduit aisément du théorème 3 le

Corollaire

1

«2, Q e Z
V

(ii)i Q ne dépend pas du choix de la métrique riemannienne g

et de la connexion V sans singularité respectant cette métrique,

(iii) F + S — A ne dépend pas du pavage (Pu ...,PF); ce nombre est

un invariant topologique de V (appelé invariant d'Euler-Poincaré,
noté /y dans la suite).

La 2-forme de courbure est en fait ce qu'on appelle une 2-forme
« tordue » ou « impaire » (cf. de Rham [2]).

Remarque. Un cas particulier classique de la formule globale de Gauss-
Bonnet consiste à supposer la métrique g définie par une immersion i de
V dans l'espace E3, et à prendre pour V la connexion de Levi-Civita de g :

si Vest orientée, i permet de définir une « application de Gauss » i : V -+ S2
de V dans la sphère S2 en associant, à tout point x de F, la classe d'équi-
pollence du vecteur normal unitaire Nx en x à z (F). La « courbure totale »
1 * m

— Q devient alors égale au «degré de l'immersion z» défini par271 xr

l (7Q

V
(où oo désigne la 2-forme surface de S2).

^0
S2
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