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48 D. LEHMANN
THEOREME 2 (théoréme des résidus).

F
> Reésp (V,9) =F+S—-4.

A=1

Démonstration. La définition du résidu s’écrit encore, en posant
B; = m — a; et en notant n, le nombre de sommets (ou d’arétes) du A-iéme
pavé P;:
21 Résp, (V,9) = 271 + ; B; — (n;m) — jﬁpl P, ds .
A

Sommant toutes ces €galités terme a terme quand A varie de 1 a F, on
obtient:

F
2n Z Réspl(v,g) = 2nF + Z(Zﬁz) - (an)n - Zfap Pgds .
=1 A Py A A 4

Mais " (Y 8,) = 2 S

A P,

Y. n, =24 (puisque chaque aréte est commune a 2 pavés),

A

et

2 f op, p,ds = 0 (puisque les intégrales se détruisent 2 a 2,
chaque aré€te étant commune a 2 pavés)

d’ou
F

2n ), Résp (V,g) = 2n(F+S—A)
i=1

C.Q.F.D.

5. CONNEXIONS METRIQUES SANS SINGULARITES

1
Si &, =, Résp, (V,9) = B .” Q d’aprés la formule locale de
T JJp

Gauss-Bonnet. Le théoréme des résidus devient donc le

THEOREME 3 (formule globale de Gauss-Bonnet). Pour toute connexion
V sans singularité sur une surface compacte V, respectant une métrique
riemannienne g, et pour tout pavage (Py, ..., Pp) de V, on a:

1
_” Q=F+5-4.
T 14
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Remarque. La 2-forme de courbure Q n’est définie que si V" est orientée.
Cependant si ¥V n’est pas orientée ni méme orientable, on peut encore

F
définir globalement 1’expression ”VQ comme étant égale a ) f f P8
A=1

(voir remarque finale du § 3).
On déduit aisément du théoréme 3 le

COROLLAIRE
~ 1 [
1) — J Qel ,
2n | )y

t{f : y : ,
(i) B J Q2 ne dépend pas du choix de la métrique riemannienne g
n)J)y

et de la connexion V sans singularité respectant cette métrique,

(iii)) F + S — A4 ne dépend pas du pavage (Pq, ..., Pr); ce nombre est
un invariant topologique de V (appelé invariant d’Euler-Poincaré,
noté y, dans la suite).

La 2-forme de courbure est en fait ce qu’on appelle une 2-forme
« tordue » ou « impaire » (cf. de Rham [2]).

Remarque. Un cas particulier classique de la formule globale de Gauss-
Bonnet consiste a supposer la métrique g définie par une immersion 1 de
¥V dans I'espace E?, et 4 prendre pour V la connexion de Levi-Civita de g:

~

si V est orientée, 1 permet de définir une « application de Gauss» 1: ¥V — S?2
de V dans la sphére S? en associant, & tout point x de ¥, la classe d’équi-
pollence du vecteur normal unitaire N, en x 4 1 (V). La « courbure totale »

1
o Q devient alors égale au «degré de I'immersion 1» défini par
T 14

~ UF
vV

2 — (ol o, désigne la 2-forme surface de S?).

(‘
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