Zeitschrift: L'Enseignement Mathématique

Herausgeber: Commission Internationale de l'Enseignement Mathématique

Band: 27 (1981)

Heft: 1-2: L'ENSEIGNEMENT MATHÉMATIQUE

Artikel: THÉORÈMES DE GAUSS-BONNET, DE HOPF, ET RÉSIDUS DES

CONNEXIONS MÉTRIQUES A SINGULARITÉS

Autor: Lehmann, Daniel

Kapitel: 4. Théorème des résidus

DOI: https://doi.org/10.5169/seals-51739

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 09.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

$$\left(-\left(\frac{d\gamma_{i+1}}{ds}\right)_{M_i}, -\left(\frac{d\gamma_i}{ds}\right)_{M_i}\right) = \left(\left(\frac{d\gamma_{i+1}}{ds}\right)_{M_i}, \left(\frac{d\gamma_i}{ds}\right)_{M_i}\right):$$

dans le groupe des angles, l'angle est changé en son opposé, mais la mesure des angles dépendant de l'orientation de $T_{M_i}(V)$ et celle-ci étant changée,

 α_i = mesure par rapport à l'ancienne orientation (comprise entre $-\pi$ et $+\pi$) de l'angle

$$\left(\left(\frac{d\gamma_i}{ds} \right)_{M_i}, \quad \left(\frac{d\gamma_{i+1}}{ds} \right)_{M_i} \right)$$

= mesure par rapport à la nouvelle orientation de

$$\left(\frac{d\gamma_{i+1}}{ds}\right)_{M_i}, \quad \left(\frac{d\gamma_i}{ds}\right)_{M_i}\right).$$

Donc α_i ne change pas.

Ceci achève la démonstration de la partie (i) du théorème.

Si l'intérieur de P est tout entier inclus dans U, la formule de Green-Riemann s'écrit:

$$\int_{\partial P} \omega = \iint_{P} d\omega = \iint_{P} \Omega,$$

d'où le corollaire.

Remarque. Si on change l'orientation de U, on change celle de P, et Ω est changé en $-\Omega$, de sorte que $\iint_{P^-} (-\Omega) = \iint_P \Omega$ ne change pas.

4. Théorème des résidus

Supposons désormais la surface V compacte (non nécessairement orientable), et soit $U = V - \mathcal{S}$ un ouvert de V. On munit U d'une métrique riemannienne g, et d'une connexion ∇ respectant cette métrique.

On supposera en outre qu'il existe un pavage différentiable $(P_1, ..., P_F)$ de V ayant les propriétés suivantes:

- (i) chaque pavé P_{λ} est inclus dans un ouvert parallélisable U_{λ} de V,
- (ii) $\mathscr{S} = \coprod_{\lambda=1}^{F} \mathscr{S}_{\lambda}$ où \mathscr{S}_{λ} est un fermé de V (éventuellement vide) inclus dans l'intérieur du pavé P_{λ} .

Notons F, S et A le nombre de faces, sommets et arêtes de ce pavage. On a alors le

Théorème 2 (théorème des résidus).

$$\sum_{\lambda=1}^{F} \operatorname{R\acute{e}s}_{P_{\lambda}}(\nabla, g) = F + S - A.$$

Démonstration. La définition du résidu s'écrit encore, en posant $\beta_i = \pi - \alpha_i$ et en notant n_{λ} le nombre de sommets (ou d'arêtes) du λ -ième pavé P_{λ} :

$$2\pi \operatorname{R\acute{e}s}_{P_{\lambda}}(\nabla, g) = 2\pi + \sum_{P_{\lambda}} \beta_{i} - (n_{\lambda}\pi) - \int_{\partial P_{\lambda}} \rho_{g} ds.$$

Sommant toutes ces égalités terme à terme quand λ varie de 1 à F, on obtient:

$$2\pi \sum_{\lambda=1}^{F} \operatorname{R\acute{e}s}_{P_{\lambda}}(\nabla, g) = 2\pi F + \sum_{\lambda} (\sum_{P_{\lambda}} \beta_{i}) - (\sum_{\lambda} n_{\lambda}) \pi - \sum_{\lambda} \int_{\partial P_{\lambda}} \rho_{g} \, ds.$$

Mais
$$\sum_{\lambda} \left(\sum_{P_2} \beta_i \right) = 2\pi S$$

$$\sum_{\lambda} n_{\lambda} = 2A$$
 (puisque chaque arête est commune à 2 pavés),

 $\sum_{\lambda} \int_{\partial P_{\lambda}} \rho_g ds = 0$ (puisque les intégrales se détruisent 2 à 2, chaque arête étant commune à 2 pavés)

ďoù

$$2\pi \sum_{\lambda=1}^{F} \operatorname{R\acute{e}s}_{P_{\lambda}}(\nabla, g) = 2\pi (F + S - A)$$

C.Q.F.D.

5. Connexions métriques sans singularités

Si $\mathscr{S}_{\lambda} = \varnothing$, Rés_{P_{λ}} $(\nabla, g) = \frac{1}{2\pi} \iint_{P_{\lambda}} \Omega$ d'après la formule locale de Gauss-Bonnet. Le théorème des résidus devient donc le

Théorème 3 (formule globale de Gauss-Bonnet). Pour toute connexion ∇ sans singularité sur une surface compacte V, respectant une métrique riemannienne g, et pour tout pavage $(P_1, ..., P_F)$ de V, on a:

$$\frac{1}{2\pi} \iint_{V} \Omega = F + S - A.$$