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3. Résidus et formule locale de Gauss-Bonnet

Soit P un pavé differentiate de V, dont nous supposerons le bord

inclus dans un ouvert parallélisable U de V.

Supposons l'ouvert U muni d'une métrique riemannienne g, et d'une
connexion V respectant cette métrique.

Choisissons une orientation de U et notons ÔP Iyt le bord orienté
de P (orientation de dP compatible avec celle de U au sens habituel).

Notons enfin a1? a2,... les discontinuités angulaires de ôP avec la
convention suivante: oq désigne la mesure comprise entre — n et +n de

l'angle orienté —) j où Mt désigne le sommet de P qui
\\dsJMi \ à s )MJ

est extrémité de yt et origine de yi+1.

Définition. On appellera résidu de (V, g) en P le nombre

Théorème 1. (i) La définition ci-dessus du résidu ne dépend pas du
choix de l'orientation de U.
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(ii) Soit U un ouvert contenant U et contenant tout l'intérieur de P;

soit A un champ de vecteurs sans singularité sur U, et définissons sur U
un champ de repères orthonormés (A, B) en imposant à A d'être positivement

colinéaire à A (A ^f/||v4||) sur U. Posant co u>(A B), on a alors:

Corollaire (formule locale de Gauss-Bonnet). Si l'intérieur de P est

tout entier inclus dans U, RésP (V,g) — (T Q (Û désignant la
2n JJp

courbure de V).
Pour tout arc différentiable y de dP, dont on note t le champ des vecteurs

tangents, posons en effet

<p(s) (^(s),t(s))gR/2tcZ.

dcp
D'après 2 (vii), p co (t)

ds

Donc
$dPPg(s)ds X

i

Mais Y, dty 271 — Y ai Puisque A est défini sur tout l'intérieur de P,
i i

d'où la partie (ii) du théorème.

Supposons maintenant que l'on change l'orientation de U.

1) $ôp pg ds ne change pas : en effet l'orientation de dP est changée,

donc t est changé en — t; l'orientation de U est changée aussi, donc v ne

change pas. V (_T) (-t) Vtt pgv donc pg ne change pas; ds est

changé en —ds, et

\-yPg(-ds)]ypgds.

2) Les discontinuités angulaires oq ne changent pas: en effet l'angle
en Mt

est changé en
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dyi+ A fdyA \ f(dyi+1\ (dy>\

ds JMi \dsJMJ VV /M; \dsJMi

dans le groupe des angles, l'angle est changé en son opposé, mais la mesure

des angles dépendant de l'orientation de TM. (V) et celle-ci étant changée,

oq mesure par rapport à l'ancienne orientation (comprise entre — n

et + n) de l'angle

fdy\ fdyi+ ^
K ds/Mi \ ds /Mi

mesure par rapport à la nouvelle orientation de

dyi+1\ fdyA

ds JMi \dsJMi
Donc ai ne change pas.

Ceci achève la démonstration de la partie (i) du théorème.

Si l'intérieur de P est tout entier inclus dans U, la formule de Green-

Riemann s'écrit:

U® Npdco
d'où le corollaire.

Remarque. Si on change l'orientation de C7, on change celle de P, et
Q est changé en -Q, de sorte que JJP_ (-Q) JJP Q ne change pas.

4. Théorème des résidus

Supposons désormais la surface V compacte (non nécessairement
orientable), et soit U V - SP un ouvert de V. On munit U d'une métrique
riemannienne g, et d'une connexion V respectant cette métrique.

On supposera en outre qu'il existe un pavage différentiable (Pl5 PF)
de V ayant les propriétés suivantes :

(i) chaque pavé Px est inclus dans un ouvert parallélisable Ux de F,
F

(ii) JJ <9^ où SPX est un fermé de V (éventuellement vide)
A 1

inclus dans l'intérieur du pavé P?

Notons P, S et A le nombre de faces, sommets et arêtes de ce pavage.
On a alors le
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