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RÉSIDUS DES CONNEXIONS À SINGULARITÉS 43

2. Connexions métriques sur une surface (Rappels)

Soit V une surface différentiable (variété C00 de dimension 2), non
nécessairement compacte pour le moment, et g < une métrique

riemannienne sur V.

Soit V une connexion métrique sur V. Pour tout couple (X, Y) de

champ de vecteurs, Vx Y désigne un autre champ de vecteurs

(i) dépendant ^°° (L)-linéairement de X (tfœ (V) désignant l'algèbre
des fonctions C00 de F dans R),

(ii) dépendant additivement de Y,

(iii) vérifiant, pour toute u g ^°° (V),

Vx(uY) (X.u) Y + u\7x 7,

(iv) respectant la métrique g au sens suivant: pour tous champs de

vecteurs, X, 7, Z, on a

X < 7, Z > < V* 7, Z > + < 7, Vz Z >

On sait qu'il existe toujours de telles connexions métriques, par exemple
celle de Levi-Civita caractérisée par la formule supplémentaire

Vx7-VyX [X, 7].
Mais nous ne nous limiterons pas à celle-ci.

Si U désigne un ouvert parallélisable de V (c'est-à-dire dont le module
des champs de vecteurs est libre) et si (A, B) désigne un champ de repères
orhtonormés sur U, l'expression

Q (X, 7) CVjyVy-ß VyVjy-^ V [X, Y] B
>

A. >

ne dépend que de l'orientation du champ de repères (A, B) mais non à

proprement parler de A et B, et dépend ^°° (K)-bilinéairement de X et 7 :

c'est donc une 2-forme sur U, que l'on peut définir sur la surface V toute
entière si celle-ci est orientable, et qu'on appelle 2-forme de courbure (si on
change l'orientation de U, Q est changée en -Q). [Rappelons, lorsque V
est la connexion de Levi-Civita, que la courbure représente l'obstruction à

l'existence d'une isométrie locale avec le plan euclidien.]
Soit s -* y (s) un arc de courbe différentiable sur V, supposé paramétré

par l'abscisse curviligne s; le champ des vecteurs tangents t — est donc
ds
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partout de longueur 1: on déduit de (iv) que Vtt est normal à z en tout
point de y. Supposons alors le support de y inclus dans un ouvert orientable
U de F et soit v (s) le vecteur tangent à F en y (s) déduit de t (s) par rotation
de + n/2 (une orientation de U ayant été choisie). Il existe donc une fonction

différentiable s -> pg (s) telle que

VT t pg v :

c'est cette fonction que nous appellerons la courbure géodésique de y (elle
dépend de l'orientation de y et de l'orientation de U).

Calculs locaux. Soit U un ouvert parallélisable de F, et (A, B) un champ
de repères orthonormés sur U : Les formules (i), (ii), (iii), (iv) prouvent
l'existence d'une 1-forme cO(a,b) sur U telle que

f Vy B +cO(A By(Y)A
Vy A —CO(A,B)(Y)B

pour tout champ de vecteurs Y sur U. (On notera en abrégé: VB + œA>

VA -coB). Si (A \ B') est un autre champ de repères orthonormés sur
U déduit de (A, B) par rotation 0 (A' cos O.A + sin O.B, B' —sin O.A

+ cos O.B), où 0 : U —RjlnZ est une fonction différentiable, on vérifie
aisément que

(#) œ(A', B') œ(A, B) —

Attention: malgré la notation, la 1-forme fermée dO peut ne pas être un
cobord si U n'est pas simplement connexe; la fonction 0 prend en effet ses

valeurs dans R/2tl Z, et non dans R).
Si on oriente U en décrétant le champ de repères (A, B) direct, la 2-forme

de courbure est donnée par

(vi) Q dco(A,B)

Enfin, si y est une courbe orientée dans U, et si l'angle polaire
(Ay(s), t (i-)) de son vecteur tangent unitaire z (s) est égal à <p (s)

(t coscp A + sin(p B)
on vérifie aisément:

dcp (s)
(vii) Pg (s) —
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