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RESIDUS DES CONNEXIONS A SINGULARITES 43

2. CONNEXIONS METRIQUES SUR UNE SURFACE (Rappels)

Soit ¥ une surface différentiable (variété C*® de dimension 2), non
nécessairement compacte pour le moment, et g = <, ) une métrique
riemannienne sur V.

Soit V une comnexion métrique sur V. Pour tout couple (X, Y) de
champ de vecteurs, Vy Y désigne un autre champ de vecteurs

(i) dépendant € (V)-linéairement de X (¥ (V) désignant I'algébre
des fonctions C® de ¥ dans R),

(ii) dépendant additivement de Y,

(iii) vérifiant, pour toute u e €~ (V),
Vy@Y) = uw)Y+uvy?,

| (iv) respectant la métrique g au sens suivant: pour tous champs de
| vecteurs, X, ¥, Z, on a

X. <Y Z>=<vyY,Z>+ <Y, VxZ >.

l On sait qu’il existe toujours de telles connexions métriques, par exemple
celle de Levi-Civita caractérisée par la formule supplémentaire

VXY"‘VyX — [X, Y].

Mais nous ne nous limiterons pas a celle-ci.

| Si U désigne un ouvert parallélisable de V" (c’est-a-dire dont le module
| des champs de vecteurs est libre) et si (4, B) désigne un champ de repéres
| orhtonormés sur U, ’expression

Q(X, Y) = < VXVYB - VYVXB — VIx, 1] B, A >

| ne dépend que de Porientation du champ de repéres (4, B) mais non 2
proprement parler de A4 et B, et dépend € (V)-bilinéairementde X et Y:
| c’est donc une 2-forme sur U, que I'on peut définir sur la surface V toute
entiére si celle-ci est orientable, et qu’on appelle 2-forme de courbure (si on
| change I'orientation de U, Q est changée en — ). [Rappelons, lorsque v
est la connexion de Levi-Civita, que la courbure représente 1’obstruction a
| Iexistence d’une isométrie locale avec le plan euclidien.]
| Soit s — y (s) un arc de courbe différentiable sur V, supposé paramétré

: i d
par Pabscisse curviligne s; le champ des vecteurs tangents © = -d—y est donc
A S
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partout de longueur 1: on déduit de (iv) que V.7 est normal & T en tout
point de y. Supposons alors le support de y inclus dans un ouvert orientable |
U de V et soit v (s) le vecteur tangent & ¥ en y (s) déduit de 7 (s) par rotation
de +x/2 (une orientation de U ayant été choisie). Il existe donc une fonc-
tion différentiable s — p, (s) telle que |

VeT = Py V-

c’est cette fonction que nous appellerons la courbure géodésique de vy (elle
dépend de I’orientation de y et de ’orientation de U).

Calculs locaux. Soit U un ouvert parallélisable de V, et (4, B) un champ
de repéres orthonormés sur U: Les formules (i), (i), (iii), (iv) prouvent
’existence d’une 1-forme w, p, sur U telle que

{VYB = +w(A,B) (Y)A

VY A = _a)(A,B) (Y) B
pour tout champ de vecteurs Y sur U. (On notera en abrégé: VB = +wA,
VA = —wB). Si (4', B") est un autre champ de reperes orthonormés sur
U déduit de (4, B) par rotation 6 (4" = cos 0.4 + sin 6.B, B = —sin 0.4

+ cos 6.B), ou 0:U — R/2nZ est une fonction différentiable, on vérifie
aisément que

(v) O, gy = D4,y — d0

ATTENTION: malgré la notation, la 1-forme fermée df peut ne pas étre un
cobord si U n’est pas simplement connexe; la fonction 8 prend en effet ses
valeurs dans R/2n Z, et non dans R).

Si on oriente U en décrétant le champ de repéres (4, B) direct, 1a 2-forme
de courbure est donnée par

(‘Ul) Q == dw(A’ B)

Enfin, si y est une courbe orientée dans U, et si I’angle polaire
(4,5, 7 (5)) de son vecteur tangent unitaire 7 (s) est égal a ¢ (s)

(t =cosp A + sinp B),
on vérifie aisément:

(vii) py(8) =
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