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THÉORÈMES DE GAUSS-BONNET, DE HOPF,

ET RÉSIDUS DES CONNEXIONS MÉTRIQUES
A SINGULARITÉS

par Daniel Lehmann x)

1. Introduction

On connaît le « théorème local » de Gauss-Bonnet, sur une surface V

munie d'une métrique riemannienne g :

1

2tl
Q 1 -

1

2n
PgdS "F Yj ^

pg désignant la courbure géo-

désique sur le bord dP d'un pavé

P, oq les discontinuités angulaires
de dP et Q la 2-forme de courbure
d'une connexion V, quelconque
(pas forcément celle de Levi-

Civita), respectant la métrique g.
A partir de ce théorème local,

on retrouve classiquement le

« théorème global » de Gauss-

Bonnet quand V est une surface compacte (orientée ou non) :
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Q Xv (invariant d'Euler-Poincaré),

PF), et en décomposant l'inté-en munissant V d'un pavage (P1? PA,

grale JJF Q sous la forme Y JJPA

Si l'on suppose, maintenant, que la métrique g et la connexion ne sont
plus définies qu'au-dessus d'un ouvert U V — S contenant les sommets

et les arêtes du pavage utilisé, autrement dit si SP k où SPx
A 1

x) ERA au CNRS n° 07-590.
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désigne un fermé (éventuellement vide) inclus dans l'intérieur du pavé Px,
le terme de droite dans la formule locale de Gauss-Bonnet conserve une

signification, bien que le terme de gauche — |f Q puisse ne plus en
2nJJpÀ

avoir: on appellera alors « résidu » de (V, g) on Px l'expression
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et on démontrera le « théorème des résidus »
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dont on verra qu'il contient comme cas particuliers, outre le théorème

global de Gauss-Bonnet, le théorème de Hopf relatif à l'indice des champs
de vecteurs. [Il contient d'ailleurs aussi la formule de Riemann-Hurvvitz

pour les revêtements ramifiés (cf. [4]).]
Plus généralement, pour les G-fibrés principaux différentiables E V

(G groupe de Lie), on peut étendre la théorie de Chern-Weil pour les classes

caractéristiques réelles de dimension <2fc (k entier > 0) au cas de connexions
définies seulement au-dessus du complémentaire U V — SE d'une partie
fermée SP de V vérifiant la propriété suivante: il existe une triangulation
différentiable K de V dont le 2k - 1 squelette sk2k~1K ne rencontre pas SP,

Lorsque SP — 0, on retrouve évidemment la théorie classique de Chern-
Weil. On retrouve par contre la théorie de l'obstruction à prolonger à

sk2k K une section de E définie au-dessus de sk2k~1 K, prenant pour SP

le complémentaire dans V d'un voisinage tubulaire ouvert U de sk21"'1 K
dans V, pour œ la connexion plate suris \v associée à la trivialisation définie

par une section différentiable g de E\v dont la restriction à sk21"'1 K est

homotope à ax. (La théorie de Chern-Weil généralise le théorème de Gauss-

Bonnet, tandis que la théorie de l'obstruction généralise le théorème de

Hopf.)
Bien que cette généralisation ait été rédigée dans [4], il nous a semblé

utile d'exposer à part le cas élémentaire de l'invariant d'Euler Poincaré des

surfaces compactes, étant donné ses retombées dans l'enseignement
universitaire « sous gradué » (cf. par exemple [1] [3] [5] [6] [7]).
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