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désique sur le bord dP d’un pavé
8 P, o, les discontinuités angulaires

B d’une connexion ¥, quelconque
B (pas forcément celle de Levi-
i Civita), respectant la métrique g.

THEOREMES DE GAUSS-BONNET, DE HOPF,
ET RESIDUS DES CONNEXIONS METRIQUES
A SINGULARITES

par Daniel LEHMANN 1)

1. INTRODUCTION

On connait le « théoréme local » de Gauss-Bonnet, sur une surface V
@ munie d’'une métrique riemannienne g:

! Q=1 ! ds + ),
- = —_—— o; s

p, désignant la courbure géo-

- de 0P et Q la 2-forme de courbure

A partir de ce théoréme local,
I on retrouve classiquement le

B« théoréme global» de Gauss-
@ Bonnet quand ¥V est une surface compacte (orientée ou non):

1
__JJ Q =y (invariant d’Euler-Poincaré),
21 14

en munissant ¥ d’un pavage (P, ..., P;, ..., Pp), et en décomposant I'inté-
d grale [[ Qsouslaforme Y [[, Q.
: =1

Si I’on suppose, maintenant, que la métrique g et la connexion ne sont
plus définies qu’au-dessus d’un ouvert U = V' — S contenant les sommets

F
| ct les arétes du pavage utilisé, autrement dit si & = [[ &, ou &,
A=1

1) ERA au CNRS n° 07-590.
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désigne un fermé (éventuellement vide) inclus dans lintérieur du pavé P,,
le terme de droite dans la formule locale de Gauss-Bonnet conserve une

e , 1 :
signification, bien que le terme de gauche o J f Q puisse ne plus en
T )P,

avoir: on appellera alors « résidu » de (V, g) on P, ’expression

’ 1
ReSPZ(V,Q) =1- ——[—[ pyds + Z%] ,

et on démontrera le « théoréme des résidus »

F

Y. Résp, (V,9) = xy,
=1

dont on verra qu’il contient comme cas particuliers, outre le théoréme
global de Gauss-Bonnet, le théoréme de Hopf relatif a I'indice des champs
de vecteurs. [Il contient d’ailleurs aussi la formule de Riemann-Hurwitz
pour les revétements ramifiés (cf. [4]).]

Plus généralement, pour les G-fibrés principaux différentiables £ — V'
(G groupe de Lie), on peut étendre la théorie de Chern-Weil pour les classes
caractéristiques réelles de dimension < 2k (k entier >0) au cas de connexions
définies seulement au-dessus du complémentaire U = V — & d’une partie
fermée & de V vérifiant la propriété suivante: il existe une triangulation
différentiable X de V dont le 2k — 1 squelette sk**~ 'K ne rencontre pas &.
Lorsque & = &, on retrouve évidemment la théorie classique de Chern-
Weil. On retrouve par contre la théorie de I'obstruction a prolonger a
sk?* K une section ¢, de E définie au-dessus de sk**~! K, prenant pour &
le complémentaire dans ¥ d’un voisinage tubulaire ouvert U de sk**~! K
dans V, pour w la connexion plate sur £ IU associée a la trivialisation définie
par une section différentiable ¢ de E|, dont la restriction & sk~ K est
homotope a o,. (La théorie de Chern-Weil généralise le théoréme de Gauss-
Bonnet, tandis que la théorie de ’obstruction généralise le théoreme de
Hopf.)

Bien que cette généralisation ait été rédigée dans [4], il nous a semblé
utile d’exposer a part le cas élémentaire de I'invariant d’Euler Poincaré des
surfaces compactes, étant donné ses retombées dans ’enseignement uni-
versitaire « sous gradué » (cf. par exemple [1] [3] [5] [6] [7])-
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