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désique sur le bord dP d’un pavé
8 P, o, les discontinuités angulaires

B d’une connexion ¥, quelconque
B (pas forcément celle de Levi-
i Civita), respectant la métrique g.

THEOREMES DE GAUSS-BONNET, DE HOPF,
ET RESIDUS DES CONNEXIONS METRIQUES
A SINGULARITES

par Daniel LEHMANN 1)

1. INTRODUCTION

On connait le « théoréme local » de Gauss-Bonnet, sur une surface V
@ munie d’'une métrique riemannienne g:

! Q=1 ! ds + ),
- = —_—— o; s

p, désignant la courbure géo-

- de 0P et Q la 2-forme de courbure

A partir de ce théoréme local,
I on retrouve classiquement le

B« théoréme global» de Gauss-
@ Bonnet quand ¥V est une surface compacte (orientée ou non):

1
__JJ Q =y (invariant d’Euler-Poincaré),
21 14

en munissant ¥ d’un pavage (P, ..., P;, ..., Pp), et en décomposant I'inté-
d grale [[ Qsouslaforme Y [[, Q.
: =1

Si I’on suppose, maintenant, que la métrique g et la connexion ne sont
plus définies qu’au-dessus d’un ouvert U = V' — S contenant les sommets

F
| ct les arétes du pavage utilisé, autrement dit si & = [[ &, ou &,
A=1

1) ERA au CNRS n° 07-590.
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désigne un fermé (éventuellement vide) inclus dans lintérieur du pavé P,,
le terme de droite dans la formule locale de Gauss-Bonnet conserve une

e , 1 :
signification, bien que le terme de gauche o J f Q puisse ne plus en
T )P,

avoir: on appellera alors « résidu » de (V, g) on P, ’expression

’ 1
ReSPZ(V,Q) =1- ——[—[ pyds + Z%] ,

et on démontrera le « théoréme des résidus »

F

Y. Résp, (V,9) = xy,
=1

dont on verra qu’il contient comme cas particuliers, outre le théoréme
global de Gauss-Bonnet, le théoréme de Hopf relatif a I'indice des champs
de vecteurs. [Il contient d’ailleurs aussi la formule de Riemann-Hurwitz
pour les revétements ramifiés (cf. [4]).]

Plus généralement, pour les G-fibrés principaux différentiables £ — V'
(G groupe de Lie), on peut étendre la théorie de Chern-Weil pour les classes
caractéristiques réelles de dimension < 2k (k entier >0) au cas de connexions
définies seulement au-dessus du complémentaire U = V — & d’une partie
fermée & de V vérifiant la propriété suivante: il existe une triangulation
différentiable X de V dont le 2k — 1 squelette sk**~ 'K ne rencontre pas &.
Lorsque & = &, on retrouve évidemment la théorie classique de Chern-
Weil. On retrouve par contre la théorie de I'obstruction a prolonger a
sk?* K une section ¢, de E définie au-dessus de sk**~! K, prenant pour &
le complémentaire dans ¥ d’un voisinage tubulaire ouvert U de sk**~! K
dans V, pour w la connexion plate sur £ IU associée a la trivialisation définie
par une section différentiable ¢ de E|, dont la restriction & sk~ K est
homotope a o,. (La théorie de Chern-Weil généralise le théoréme de Gauss-
Bonnet, tandis que la théorie de ’obstruction généralise le théoreme de
Hopf.)

Bien que cette généralisation ait été rédigée dans [4], il nous a semblé
utile d’exposer a part le cas élémentaire de I'invariant d’Euler Poincaré des
surfaces compactes, étant donné ses retombées dans ’enseignement uni-
versitaire « sous gradué » (cf. par exemple [1] [3] [5] [6] [7])-
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2. CONNEXIONS METRIQUES SUR UNE SURFACE (Rappels)

Soit ¥ une surface différentiable (variété C*® de dimension 2), non
nécessairement compacte pour le moment, et g = <, ) une métrique
riemannienne sur V.

Soit V une comnexion métrique sur V. Pour tout couple (X, Y) de
champ de vecteurs, Vy Y désigne un autre champ de vecteurs

(i) dépendant € (V)-linéairement de X (¥ (V) désignant I'algébre
des fonctions C® de ¥ dans R),

(ii) dépendant additivement de Y,

(iii) vérifiant, pour toute u e €~ (V),
Vy@Y) = uw)Y+uvy?,

| (iv) respectant la métrique g au sens suivant: pour tous champs de
| vecteurs, X, ¥, Z, on a

X. <Y Z>=<vyY,Z>+ <Y, VxZ >.

l On sait qu’il existe toujours de telles connexions métriques, par exemple
celle de Levi-Civita caractérisée par la formule supplémentaire

VXY"‘VyX — [X, Y].

Mais nous ne nous limiterons pas a celle-ci.

| Si U désigne un ouvert parallélisable de V" (c’est-a-dire dont le module
| des champs de vecteurs est libre) et si (4, B) désigne un champ de repéres
| orhtonormés sur U, ’expression

Q(X, Y) = < VXVYB - VYVXB — VIx, 1] B, A >

| ne dépend que de Porientation du champ de repéres (4, B) mais non 2
proprement parler de A4 et B, et dépend € (V)-bilinéairementde X et Y:
| c’est donc une 2-forme sur U, que I'on peut définir sur la surface V toute
entiére si celle-ci est orientable, et qu’on appelle 2-forme de courbure (si on
| change I'orientation de U, Q est changée en — ). [Rappelons, lorsque v
est la connexion de Levi-Civita, que la courbure représente 1’obstruction a
| Iexistence d’une isométrie locale avec le plan euclidien.]
| Soit s — y (s) un arc de courbe différentiable sur V, supposé paramétré

: i d
par Pabscisse curviligne s; le champ des vecteurs tangents © = -d—y est donc
A S
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partout de longueur 1: on déduit de (iv) que V.7 est normal & T en tout
point de y. Supposons alors le support de y inclus dans un ouvert orientable |
U de V et soit v (s) le vecteur tangent & ¥ en y (s) déduit de 7 (s) par rotation
de +x/2 (une orientation de U ayant été choisie). Il existe donc une fonc-
tion différentiable s — p, (s) telle que |

VeT = Py V-

c’est cette fonction que nous appellerons la courbure géodésique de vy (elle
dépend de I’orientation de y et de ’orientation de U).

Calculs locaux. Soit U un ouvert parallélisable de V, et (4, B) un champ
de repéres orthonormés sur U: Les formules (i), (i), (iii), (iv) prouvent
’existence d’une 1-forme w, p, sur U telle que

{VYB = +w(A,B) (Y)A

VY A = _a)(A,B) (Y) B
pour tout champ de vecteurs Y sur U. (On notera en abrégé: VB = +wA,
VA = —wB). Si (4', B") est un autre champ de reperes orthonormés sur
U déduit de (4, B) par rotation 6 (4" = cos 0.4 + sin 6.B, B = —sin 0.4

+ cos 6.B), ou 0:U — R/2nZ est une fonction différentiable, on vérifie
aisément que

(v) O, gy = D4,y — d0

ATTENTION: malgré la notation, la 1-forme fermée df peut ne pas étre un
cobord si U n’est pas simplement connexe; la fonction 8 prend en effet ses
valeurs dans R/2n Z, et non dans R).

Si on oriente U en décrétant le champ de repéres (4, B) direct, 1a 2-forme
de courbure est donnée par

(‘Ul) Q == dw(A’ B)

Enfin, si y est une courbe orientée dans U, et si I’angle polaire
(4,5, 7 (5)) de son vecteur tangent unitaire 7 (s) est égal a ¢ (s)

(t =cosp A + sinp B),
on vérifie aisément:

(vii) py(8) =




RESIDUS DES CONNEXIONS A SINGULARITES 45

3. RESIDUS ET FORMULE LOCALE DE (GAUSS-BONNET

Soit P un pavé différentiable de ¥, dont nous supposerons le bord
inclus dans un ouvert parallélisable U de V.

Supposons 1’ouvert U muni d’une métrique riemannienne g, et d’une
connexion V respectant cette métrique.

‘_ Choisissons une orientation de U et notons 0P = Xy, le bord orienté
M de P (orientation de 0P compatible avec celle de U au sens habituel).
Notons enfin oy, ®,, ... les discontinuités angulaires de 0P avec la
§ convention suivante: «; désigne la mesure comprise entre —7 et +7n de
o AT dyiy 1 . . .
& l'angle orienté , ol M; désigne le sommet de P qui
. ds Ju; ds )u,

est extrémité de y; et origine de vy, 4.

Définition. On appellera résidu de (V, g) en P le nombre
) 1
ReSP(V,g) =1_—_[J pgdS +ZOCl:|.
2n oP P

THEOREME 1. (1) La définition ci-dessus du résidu ne dépend pas du
f choix de P’orientation de U.
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(i1) Soit U un ouvert contenant U et contenant tout [’intérieur de P,

soit 4 un champ de vecteurs sans singularité sur U, et définissons sur U
un champ de repéres orthonormés (4, B) en imposant & 4 d’étre positive-

ment colinéaire a 4 (4 = A/ ”A”) sur U. Posant @ = w4, 5y, on a alors:

1
Résp(V, g) =5—7;J‘ .
oP

COROLLAIRE (formule locale de Gauss-Bonnet). Si 'intérieur de P est
1
tout entier inclus dans U, Résp (V,g9) = g Jf Q  (Q désignant la
nTJJp

courbure de V).
Pour tout arc différentiable y de 0P, dont on note 7 le champ des vecteurs
tangents, posons en effet

QD (S) = (Ay(s): T(s)) € R/27’C Z .

. . do
D’apres 2 (vii), p, = i w (7).
S

Donc
jappg(s) ds = Z j)’id(p - Japw .

Mais f ,;dp = 2m — Y «; puisque A est défini sur tout I'intérieur de P,
i i
d’ou la partie (ii) du théoréme.

Supposons maintenant que 1’on change I’orientation de U.

1) fap p, ds ne change pas: en effet Porientation de 0P est changée,
donc t est changé en —t; 'orientation de U est changée aussi, donc v ne
change pas. V (-, (—1) = V.7 = p,v donc p, ne change pas; ds est
changé en —ds, et

j—vpg(—ds) = jvpgds'

2) Les discontinuités angulaires o; ne changent pas: en effet I’angle

en M;
Ci)_’_i dYit1
ds Mi, ds ),

est changé en
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d'}fi+1 _ C_izf _ dyi+1> <d_y,> )
ds Mi’ ds [y, ds Mi’ ds/u,;

dans le groupe des angles, I’angle est changé en son oppos€, mais la mesure
des angles dépendant de I'orientation de T, (V) et celle-ci etant changée,

o; = mesure par rapport & I’ancienne orientation (comprise entre —7
et +n) de angle

(), ()

= mesure par rapport a la nouvelle orientation de
dyiti @
ds Ju, ’ ds ), '

Ceci achéve la démonstration de la partie (i) du théoreme.
B  Si l'intérieur de P est tout entier inclus dans U, la formule de Green-
8 Riemann s’écrit:

Donc o; ne change pas.

japw = _”Pdw = “PQa
¥ d’ou le corollaire.

B  Remarque. Si on change 'orientation de U, on change celle de P, et
B Q est changé en —Q, de sorte que ”P_ (—Q) = ”P Q2 ne change pas.
4. THEOREME DES RESIDUS

Supposons désormais la surface V' compacte (non nécessairement orien-
 table), et soit U = V' — & un ouvert de V. On munit U d’une métrique

B riemannienne g, et d’une connexion V respectant cette métrique.

On supposera en outre qu’il existe un pavage différentiable (P, ..., Py)
@ de V ayant les propriétés suivantes:

(i) chaque pavé P, est inclus dans un ouvert parallélisable U, de V,
F

(i) & = [] &, ou &, est un fermé de V (éventuellement vide)
A=1

inclus dans 'intérieur du pavé P,.
Notons F, S et 4 le nombre de faces, sommets et arétes de ce pavage.
On a alors le
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THEOREME 2 (théoréme des résidus).

F
> Reésp (V,9) =F+S—-4.

A=1

Démonstration. La définition du résidu s’écrit encore, en posant
B; = m — a; et en notant n, le nombre de sommets (ou d’arétes) du A-iéme
pavé P;:
21 Résp, (V,9) = 271 + ; B; — (n;m) — jﬁpl P, ds .
A

Sommant toutes ces €galités terme a terme quand A varie de 1 a F, on
obtient:

F
2n Z Réspl(v,g) = 2nF + Z(Zﬁz) - (an)n - Zfap Pgds .
=1 A Py A A 4

Mais " (Y 8,) = 2 S

A P,

Y. n, =24 (puisque chaque aréte est commune a 2 pavés),

A

et

2 f op, p,ds = 0 (puisque les intégrales se détruisent 2 a 2,
chaque aré€te étant commune a 2 pavés)

d’ou
F

2n ), Résp (V,g) = 2n(F+S—A)
i=1

C.Q.F.D.

5. CONNEXIONS METRIQUES SANS SINGULARITES

1
Si &, =, Résp, (V,9) = B .” Q d’aprés la formule locale de
T JJp

Gauss-Bonnet. Le théoréme des résidus devient donc le

THEOREME 3 (formule globale de Gauss-Bonnet). Pour toute connexion
V sans singularité sur une surface compacte V, respectant une métrique
riemannienne g, et pour tout pavage (Py, ..., Pp) de V, on a:

1
_” Q=F+5-4.
T 14




RESIDUS DES CONNEXIONS A SINGULARITES 49

Remarque. La 2-forme de courbure Q n’est définie que si V" est orientée.
Cependant si ¥V n’est pas orientée ni méme orientable, on peut encore

F
définir globalement 1’expression ”VQ comme étant égale a ) f f P8
A=1

(voir remarque finale du § 3).
On déduit aisément du théoréme 3 le

COROLLAIRE
~ 1 [
1) — J Qel ,
2n | )y

t{f : y : ,
(i) B J Q2 ne dépend pas du choix de la métrique riemannienne g
n)J)y

et de la connexion V sans singularité respectant cette métrique,

(iii)) F + S — A4 ne dépend pas du pavage (Pq, ..., Pr); ce nombre est
un invariant topologique de V (appelé invariant d’Euler-Poincaré,
noté y, dans la suite).

La 2-forme de courbure est en fait ce qu’on appelle une 2-forme
« tordue » ou « impaire » (cf. de Rham [2]).

Remarque. Un cas particulier classique de la formule globale de Gauss-
Bonnet consiste a supposer la métrique g définie par une immersion 1 de
¥V dans I'espace E?, et 4 prendre pour V la connexion de Levi-Civita de g:

~

si V est orientée, 1 permet de définir une « application de Gauss» 1: ¥V — S?2
de V dans la sphére S? en associant, & tout point x de ¥, la classe d’équi-
pollence du vecteur normal unitaire N, en x 4 1 (V). La « courbure totale »

1
o Q devient alors égale au «degré de I'immersion 1» défini par
T 14

~ UF
vV

2 — (ol o, désigne la 2-forme surface de S?).

(‘
JJ S2
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6. CONNEXIONS METRIQUES PLATES A SINGULARITES ISOLEES

D’une connexion V, on dit qu’elle est « plate » ou « sans courbure »
si sa 2-forme de courbure (partout définie, au signe prés si V' n’est pas
orientée) est nulle. Le théoréme 3 implique en particulier que si y, # O,
il n’existe pas sur V' de métrique g avec connexion métrique sans courbure
et sans singularité. Par contre il existera toujours sur V' des connexions
métriques plates a singularités isolées: on appelle ainsi la donnée d’'un nombre
fini de points (xq, ..., x,) sur V, d’une métrique riemannienne g et d’une
connexion métrique plate sur Pouvert U = V — {x, ..., x,} de V. Les
points x; sont appelés les singularités de V.

Exemple 1. Tout difféomorphisme du tronc de cone (ouvert) ou du
tronc de cylindre (ouvert) sur la sphére S? privée de ses 2 pdles nordN et
sud S permet de définir, par transport de structure, une métrique localement
euclidienne sur S? — {S, N}, puisque cone et cylindre sont des surfaces
développables: la courbure de la connexion de Levi-Civita correspondante
est donc nulle.

Exemple 2. Soit X un champ de vecteurs sur V, n’ayant que des singu-
larités isolées x, ..., x,. Soit g = <, > une métrique riemannienne arbi-
traire sur U = V — {xy, ..., x,} et 4 le champ de vecteurs X/” X” sur U.
Il existe alors une unique connexion métrique V sur U telle que V4 = O:
si B est un champ de vecteurs unitaires orthogonal a 4 sur un ouvert
parallélisable W de U, cette connexion V est définie par w4 py = 0. Cette
connexion sur U est en particulier plate (dw 4, 5y = 0).

Remarque. On peut en particulier supposer la métrique g définie sur
tout V. Admettant alors I’existence de champ de vecteurs X a singularités
isolées sur toute surface compacte ¥ (ou I’existence de fonctions de Morse),
cet exemple 2 prouve que pour toute métrique g sur ¥, il existe une
connexion plate avec un nombre fini de singularités, respectant g.

Exemple 3. Soient (xi,...,x,) des points de V' tels que louvert
U=V~ {x4, .., x,} soit parallélisable. Soit (4, B) un champ de repéres
sur U, et w une 1-forme fermée sur U. On définit sur U une métrique g et
une orientation en décrétant le champ de repéres (4, B) orthonormé et
direct. On définit une connexion métrique V sur U en posant W4,y = O

(VB=wA, VA= —wB).
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Puisque la 1-forme w est fermée, la connexion V est plate.

Soient (xy, ..., x,) les singularités (isolées) d’une connexion plate V
sur V' — {xi, ..., x,} respectant une métrique g. Soit P, un pavé de V7,
inclus dans un ouvert parallélisable U, ne contenant aucune singularité
sur son bord AP,, et en contenant exactement une, X, en son intérieur.
Soient (4;, B;) un champ de repéres orthonormés sur U, — {x,}, et
W; = Oa,,p,) 12 1-forme fermée sur U, — {x,} telle que

VB, = w;"4,,
VAA = _wl.Bl'

THFOREME 4.
, 1
ReSPl(va g) = ——J w, +1(A;,x,)
21 ) op,,
(I(A4;, x,) indiquant 'indice du champ de vecteurs 4, en x ,1).

CoroOLLAIRE. La définition du résidu ne dépend pas du choix du pavé
P, satisfaisant aux conditions requises. (On notera encore Rés (V, x;)
ce résidu.)

Démonstration du corollaire. Si P; est un autre pavé vérifiant les condi-
tions, les courbes fermés oP, et P, sont toutes deux de méme indice 1 par
rapport & x, (une fois choisie une orientation de U,). La forme w, étant
fermée, la formule de Stokes permet de conclure:

w}, = COA .
0P, 0P}

Quant a la définition de lindice 7(4,, x,), on la suppose ici connue
(et donc indépendante de P,). [Une définition et étude de cet indice, en
bonne et due forme, pourrait éventuellement étre faite ici dans un cours,
s1 elle ne I’a pas été avant.]

Démonstration du théoréme. Soit A un champ de vecteurs sans singu-

larités défini sur tout I'ouvert U, (y compris en x,). Posons 4’ = /I/ ” A ”
sur U, — {x,}, et soit B, le champ de vecteur sur U, — {x,} déduit de
A; par rotation de +mx/2 (pour orientation de U, — {x,} définie par
(4;, B;)). Soient enfin 0,:U, — {x;,} > R/2nZ I’angle de rotation per-
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mettant de passer de (4, B;) & (4;, B), et @' = @45 5;). De la formule
(v) du § 2, on déduit: w; = w, + df,. Du théoréme 1, on déduit

1
Résp. (V,g) = — w; .
P 2n ) op, g

1
Puisque 7(4,, x;) = — J. df;, le théoréme 4 en résulte.
2n | op,

Remarque. Notons h, € R/2n Z (= SO (2)) 'holonomie de la connexion
métrique plate V le long du lacet 0P, entourant x,. [Puisque 0P, n’est pas
simplement connexe dans le domaine U, de V, cette holonomie n’a aucune
raison d’€tre triviale.] On vérifie aisément:

h, = 2n Rés (V,x,;) (mod 2n Z).

La notion de résidu est donc plus précise que celle d’holonomie.
Appliquons le théoréme des résidus a chacun des exemples 1, 2 et 3
ci-dessus.

Exemple 1. Notons y la
courbe de contact du tronc de
cone avec la sphére, ¢ (0 < ¢
< n/2) 'angle au sommet du
cone et R le rayon de la sphere.
Par développement du tronc
de cone dans le plan, y se déve-
loppe suivant un arc de cercle
d’angle

21 R cos ¢

0 =————— =2nsine.
R cotg o

Donc

J py,ds = 2m sin ¢ .
A

y entourant a la fois les poles
N et S, mais devant étre muni
d’orientations différentes, on
en déduit, avec des notations
évidentes:
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Rés (V,N) =1 + sin ¢
Rés(V,S) =1 —sing

Rés (V,N) + Rés(V,S) = 2 = ys2 .

Remarque. Pour le cylindre, un calcul analogue donne
Rés (V,N) = Rés (Vv,S) =1,

car y se développe alors sur le plan suivant un segment de droite de sorte
que [, p,ds = 0.

Exemple 2. Soit X un champ de vecteurs a singularités isolées
(x4, ..., X,), et g une métrique riemannienne sur la surface compacte V.

THEOREME 5 (Hopf).
Z I(Xaxl) = XV'
A=1

Posons en effet 4 = X/” X” sur U =V — {xy4, .., x;}. Soit U; un
voisinage de x, dans V, et B, un champ de vecteurs sur U; — {x,} tel que
(A4, B;) définisse un champ de repéres orthonormés sur U, — {x,}: par
définition de la connexion métrique plate de I'exemple 2, VA = 0, soit
04,8, = 0. On déduit du théoréme 4 que

Rés (V,x;) =1(4,x;) =1(X,x,)

d’ou le théoréme 5, par application du théoréme des résidus.

Exemple 3. Nous allons voir un cas particulier de la situation décrite
a ’exemple 3, explicitant le lien entre les résidus des connexions métriques
plates a singularités isolées, et les résidus des fonctions méromorphes.

Soit f: C — {z4, ..., z,} = C une fonction holomorphe. Par compacti-
fication a l'aide d’un point a linfini, U = C — {z, ..., z,} peut encore
étre considéré comme S? — {00, zy, ..., z,}.

Posons: f(z)dz = w; + i w, avec

wy = Pdx — Qdy
w, = Qdx + Pdy
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ou P (resp. Q) désignent comme d’habitude les parties réelle et imaginaire
def,etz = x + iy.

0 0
Soit4A =—etB=—etV,V,les
0x 0y
deux connexions métriques associées défi-

nies sur U respectivement par w; et w,.
Dire que f est holomorphe signifie que les
formes w, et w, sont fermées, et que par
conséquent les connexions vV, et V, sont
plates. Le résidu, au sens habituel des fonc-
tions méromorphes, est donné par

1 nd
R(f, Z;) =ﬂ f(Z)dZ
J T2
1 /e
R(f, ) = 5| f(2)dz

THEOREME 6.

Rés (Vy,z;) +iREs (Vy,2;) =i R(f, z)),
Rés (V, ) + i Rés (A4,, o) = 2(1+i) + i R(f, ®).

I

B
. B

Appliquons en effet le théoréme 4 avec 4 = ™
X

0
0y
1) Puisque le champ de repéres (4, B) est prolongeable en tout point z
situé a distance finie, le théoréme 4 (ou 1) s’écrit:

1
Rés (Vy,z;) = EEJ'y @q ,
)

1
Rés (V,,z,) = ——j @, ,
2 YA

et

1
Rés (V,z;) +iRés(V,,z,) = ZJ f(z)dz = iR(f, z;)
, 72

0 0
2) Puisque I {—, 0] =1 (—~, o) = 2, le théoréme 4 s’écrit
0x 0y

maintenant:
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1
RéS(VI, OO)=——- a)1+2,
2rn T
) 1
RCS(VZ, OO)=—* a)2+2.
27‘C s

Donc

[1]
2]
(3]
[4]

(5]

[6]
[7]

1
Rés (V,, 00) + i Rés (V,, o) = EEJ f(z)dz + 2(1+19)
Yoo

iR(f, ) + 2(1+i)
C.Q.F.D.
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