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THÉORÈMES DE GAUSS-BONNET, DE HOPF,

ET RÉSIDUS DES CONNEXIONS MÉTRIQUES
A SINGULARITÉS

par Daniel Lehmann x)

1. Introduction

On connaît le « théorème local » de Gauss-Bonnet, sur une surface V

munie d'une métrique riemannienne g :

1

2tl
Q 1 -

1

2n
PgdS "F Yj ^

pg désignant la courbure géo-

désique sur le bord dP d'un pavé

P, oq les discontinuités angulaires
de dP et Q la 2-forme de courbure
d'une connexion V, quelconque
(pas forcément celle de Levi-

Civita), respectant la métrique g.
A partir de ce théorème local,

on retrouve classiquement le

« théorème global » de Gauss-

Bonnet quand V est une surface compacte (orientée ou non) :

1

2n
Q Xv (invariant d'Euler-Poincaré),

PF), et en décomposant l'inté-en munissant V d'un pavage (P1? PA,

grale JJF Q sous la forme Y JJPA

Si l'on suppose, maintenant, que la métrique g et la connexion ne sont
plus définies qu'au-dessus d'un ouvert U V — S contenant les sommets

et les arêtes du pavage utilisé, autrement dit si SP k où SPx
A 1

x) ERA au CNRS n° 07-590.
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désigne un fermé (éventuellement vide) inclus dans l'intérieur du pavé Px,
le terme de droite dans la formule locale de Gauss-Bonnet conserve une

signification, bien que le terme de gauche — |f Q puisse ne plus en
2nJJpÀ

avoir: on appellera alors « résidu » de (V, g) on Px l'expression

1
RésPAv,g) 1 -k 2n

Pgds + £ OCi

Jôp p*

et on démontrera le « théorème des résidus »

F

Y Résp; (V, g) Xv 9

dont on verra qu'il contient comme cas particuliers, outre le théorème

global de Gauss-Bonnet, le théorème de Hopf relatif à l'indice des champs
de vecteurs. [Il contient d'ailleurs aussi la formule de Riemann-Hurvvitz

pour les revêtements ramifiés (cf. [4]).]
Plus généralement, pour les G-fibrés principaux différentiables E V

(G groupe de Lie), on peut étendre la théorie de Chern-Weil pour les classes

caractéristiques réelles de dimension <2fc (k entier > 0) au cas de connexions
définies seulement au-dessus du complémentaire U V — SE d'une partie
fermée SP de V vérifiant la propriété suivante: il existe une triangulation
différentiable K de V dont le 2k - 1 squelette sk2k~1K ne rencontre pas SP,

Lorsque SP — 0, on retrouve évidemment la théorie classique de Chern-
Weil. On retrouve par contre la théorie de l'obstruction à prolonger à

sk2k K une section de E définie au-dessus de sk2k~1 K, prenant pour SP

le complémentaire dans V d'un voisinage tubulaire ouvert U de sk21"'1 K
dans V, pour œ la connexion plate suris \v associée à la trivialisation définie

par une section différentiable g de E\v dont la restriction à sk21"'1 K est

homotope à ax. (La théorie de Chern-Weil généralise le théorème de Gauss-

Bonnet, tandis que la théorie de l'obstruction généralise le théorème de

Hopf.)
Bien que cette généralisation ait été rédigée dans [4], il nous a semblé

utile d'exposer à part le cas élémentaire de l'invariant d'Euler Poincaré des

surfaces compactes, étant donné ses retombées dans l'enseignement
universitaire « sous gradué » (cf. par exemple [1] [3] [5] [6] [7]).
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2. Connexions métriques sur une surface (Rappels)

Soit V une surface différentiable (variété C00 de dimension 2), non
nécessairement compacte pour le moment, et g < une métrique

riemannienne sur V.

Soit V une connexion métrique sur V. Pour tout couple (X, Y) de

champ de vecteurs, Vx Y désigne un autre champ de vecteurs

(i) dépendant ^°° (L)-linéairement de X (tfœ (V) désignant l'algèbre
des fonctions C00 de F dans R),

(ii) dépendant additivement de Y,

(iii) vérifiant, pour toute u g ^°° (V),

Vx(uY) (X.u) Y + u\7x 7,

(iv) respectant la métrique g au sens suivant: pour tous champs de

vecteurs, X, 7, Z, on a

X < 7, Z > < V* 7, Z > + < 7, Vz Z >

On sait qu'il existe toujours de telles connexions métriques, par exemple
celle de Levi-Civita caractérisée par la formule supplémentaire

Vx7-VyX [X, 7].
Mais nous ne nous limiterons pas à celle-ci.

Si U désigne un ouvert parallélisable de V (c'est-à-dire dont le module
des champs de vecteurs est libre) et si (A, B) désigne un champ de repères
orhtonormés sur U, l'expression

Q (X, 7) CVjyVy-ß VyVjy-^ V [X, Y] B
>

A. >

ne dépend que de l'orientation du champ de repères (A, B) mais non à

proprement parler de A et B, et dépend ^°° (K)-bilinéairement de X et 7 :

c'est donc une 2-forme sur U, que l'on peut définir sur la surface V toute
entière si celle-ci est orientable, et qu'on appelle 2-forme de courbure (si on
change l'orientation de U, Q est changée en -Q). [Rappelons, lorsque V
est la connexion de Levi-Civita, que la courbure représente l'obstruction à

l'existence d'une isométrie locale avec le plan euclidien.]
Soit s -* y (s) un arc de courbe différentiable sur V, supposé paramétré

par l'abscisse curviligne s; le champ des vecteurs tangents t — est donc
ds
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partout de longueur 1: on déduit de (iv) que Vtt est normal à z en tout
point de y. Supposons alors le support de y inclus dans un ouvert orientable
U de F et soit v (s) le vecteur tangent à F en y (s) déduit de t (s) par rotation
de + n/2 (une orientation de U ayant été choisie). Il existe donc une fonction

différentiable s -> pg (s) telle que

VT t pg v :

c'est cette fonction que nous appellerons la courbure géodésique de y (elle
dépend de l'orientation de y et de l'orientation de U).

Calculs locaux. Soit U un ouvert parallélisable de F, et (A, B) un champ
de repères orthonormés sur U : Les formules (i), (ii), (iii), (iv) prouvent
l'existence d'une 1-forme cO(a,b) sur U telle que

f Vy B +cO(A By(Y)A
Vy A —CO(A,B)(Y)B

pour tout champ de vecteurs Y sur U. (On notera en abrégé: VB + œA>

VA -coB). Si (A \ B') est un autre champ de repères orthonormés sur
U déduit de (A, B) par rotation 0 (A' cos O.A + sin O.B, B' —sin O.A

+ cos O.B), où 0 : U —RjlnZ est une fonction différentiable, on vérifie
aisément que

(#) œ(A', B') œ(A, B) —

Attention: malgré la notation, la 1-forme fermée dO peut ne pas être un
cobord si U n'est pas simplement connexe; la fonction 0 prend en effet ses

valeurs dans R/2tl Z, et non dans R).
Si on oriente U en décrétant le champ de repères (A, B) direct, la 2-forme

de courbure est donnée par

(vi) Q dco(A,B)

Enfin, si y est une courbe orientée dans U, et si l'angle polaire
(Ay(s), t (i-)) de son vecteur tangent unitaire z (s) est égal à <p (s)

(t coscp A + sin(p B)
on vérifie aisément:

dcp (s)
(vii) Pg (s) —
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3. Résidus et formule locale de Gauss-Bonnet

Soit P un pavé differentiate de V, dont nous supposerons le bord

inclus dans un ouvert parallélisable U de V.

Supposons l'ouvert U muni d'une métrique riemannienne g, et d'une
connexion V respectant cette métrique.

Choisissons une orientation de U et notons ÔP Iyt le bord orienté
de P (orientation de dP compatible avec celle de U au sens habituel).

Notons enfin a1? a2,... les discontinuités angulaires de ôP avec la
convention suivante: oq désigne la mesure comprise entre — n et +n de

l'angle orienté —) j où Mt désigne le sommet de P qui
\\dsJMi \ à s )MJ

est extrémité de yt et origine de yi+1.

Définition. On appellera résidu de (V, g) en P le nombre

Théorème 1. (i) La définition ci-dessus du résidu ne dépend pas du
choix de l'orientation de U.
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(ii) Soit U un ouvert contenant U et contenant tout l'intérieur de P;

soit A un champ de vecteurs sans singularité sur U, et définissons sur U
un champ de repères orthonormés (A, B) en imposant à A d'être positivement

colinéaire à A (A ^f/||v4||) sur U. Posant co u>(A B), on a alors:

Corollaire (formule locale de Gauss-Bonnet). Si l'intérieur de P est

tout entier inclus dans U, RésP (V,g) — (T Q (Û désignant la
2n JJp

courbure de V).
Pour tout arc différentiable y de dP, dont on note t le champ des vecteurs

tangents, posons en effet

<p(s) (^(s),t(s))gR/2tcZ.

dcp
D'après 2 (vii), p co (t)

ds

Donc
$dPPg(s)ds X

i

Mais Y, dty 271 — Y ai Puisque A est défini sur tout l'intérieur de P,
i i

d'où la partie (ii) du théorème.

Supposons maintenant que l'on change l'orientation de U.

1) $ôp pg ds ne change pas : en effet l'orientation de dP est changée,

donc t est changé en — t; l'orientation de U est changée aussi, donc v ne

change pas. V (_T) (-t) Vtt pgv donc pg ne change pas; ds est

changé en —ds, et

\-yPg(-ds)]ypgds.

2) Les discontinuités angulaires oq ne changent pas: en effet l'angle
en Mt

est changé en
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dyi+ A fdyA \ f(dyi+1\ (dy>\

ds JMi \dsJMJ VV /M; \dsJMi

dans le groupe des angles, l'angle est changé en son opposé, mais la mesure

des angles dépendant de l'orientation de TM. (V) et celle-ci étant changée,

oq mesure par rapport à l'ancienne orientation (comprise entre — n

et + n) de l'angle

fdy\ fdyi+ ^
K ds/Mi \ ds /Mi

mesure par rapport à la nouvelle orientation de

dyi+1\ fdyA

ds JMi \dsJMi
Donc ai ne change pas.

Ceci achève la démonstration de la partie (i) du théorème.

Si l'intérieur de P est tout entier inclus dans U, la formule de Green-

Riemann s'écrit:

U® Npdco
d'où le corollaire.

Remarque. Si on change l'orientation de C7, on change celle de P, et
Q est changé en -Q, de sorte que JJP_ (-Q) JJP Q ne change pas.

4. Théorème des résidus

Supposons désormais la surface V compacte (non nécessairement
orientable), et soit U V - SP un ouvert de V. On munit U d'une métrique
riemannienne g, et d'une connexion V respectant cette métrique.

On supposera en outre qu'il existe un pavage différentiable (Pl5 PF)
de V ayant les propriétés suivantes :

(i) chaque pavé Px est inclus dans un ouvert parallélisable Ux de F,
F

(ii) JJ <9^ où SPX est un fermé de V (éventuellement vide)
A 1

inclus dans l'intérieur du pavé P?

Notons P, S et A le nombre de faces, sommets et arêtes de ce pavage.
On a alors le
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Théorème 2 (théorème des résidus).

F

Y RésP;l (V, <7) F + 5 -A.
X= 1

Démonstration. La définition du résidu s'écrit encore, en posant
ßi 71 — oq et en notant le nombre de sommets (ou d'arêtes) du 2-ième
pavé Px :

2% RéspA(V,0) + £ (nx - f Pgds
px x

Sommant toutes ces égalités terme à terme quand X varie de 1 à F, on
obtient:

F

Mais 2teS
* Px

Y nx 2A (puisque chaque arête est commune à 2 pavés),
x

et

Y \dP Pgds 0 (puisque les intégrales se détruisent 2 à 2,
A chaque arête étant commune à 2 pavés)

d'où
F

2n Y RésP;i(V,g) 2n(F + S — A)
x=i

C.Q.F.D.

5. Connexions métriques sans singularités

Si £PX 0, Résp (V, g) — [T Q d'après la formule locale de
JJpa

Gauss-Bonnet. Le théorème des résidus devient donc le

Théorème 3 (formule globale de Gauss-Bonnet). Pour toute connexion
V sans singularité sur une surface compacte V, respectant une métrique
riemannienne g, et pour tout pavage (Pl9 PF) de V, on a:

Q F + S — A
v
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Remarque. La 2-forme de courbure Q n'est définie que si F est orientée.

Cependant si F n'est pas orientée ni même orientable, on peut encore
F

définir globalement l'expression JJF Q comme étant égale à £ JJpa^

(voir remarque finale du § 3).

On déduit aisément du théorème 3 le

Corollaire

1

«2, Q e Z
V

(ii)i Q ne dépend pas du choix de la métrique riemannienne g

et de la connexion V sans singularité respectant cette métrique,

(iii) F + S — A ne dépend pas du pavage (Pu ...,PF); ce nombre est

un invariant topologique de V (appelé invariant d'Euler-Poincaré,
noté /y dans la suite).

La 2-forme de courbure est en fait ce qu'on appelle une 2-forme
« tordue » ou « impaire » (cf. de Rham [2]).

Remarque. Un cas particulier classique de la formule globale de Gauss-
Bonnet consiste à supposer la métrique g définie par une immersion i de
V dans l'espace E3, et à prendre pour V la connexion de Levi-Civita de g :

si Vest orientée, i permet de définir une « application de Gauss » i : V -+ S2
de V dans la sphère S2 en associant, à tout point x de F, la classe d'équi-
pollence du vecteur normal unitaire Nx en x à z (F). La « courbure totale »
1 * m

— Q devient alors égale au «degré de l'immersion z» défini par271 xr

l (7Q

V
(où oo désigne la 2-forme surface de S2).

^0
S2
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6. Connexions métriques plates a singularités isolées

D'une connexion V, on dit qu'elle est «plate» ou «sans courbure»
si sa 2-forme de courbure (partout définie, au signe près si F n'est pas
orientée) est nulle. Le théorème 3 implique en particulier que si Xv ^ 0,

il n'existe pas sur F de métrique g avec connexion métrique sans courbure
et sans singularité. Par contre il existera toujours sur F des connexions

métriques plates à singularités isolées : on appelle ainsi la donnée d'un nombre

fini de points (xl5 xr) sur F, d'une métrique riemannienne g et d'une
connexion métrique plate sur l'ouvert U F — {xl9 xr} de F. Les

points xx sont appelés les singularités de V.

Exemple 1. Tout difféomorphisme du tronc de cône (ouvert) ou du

tronc de cylindre (ouvert) sur la sphère S2 privée de ses 2 pôles nordTV et
sud S permet de définir, par transport de structure, une métrique localement
euclidienne sur S2 — {S, TV}, puisque cône et cylindre sont des surfaces

développables : la courbure de la connexion de Levi-Civita correspondante
est donc nulle.

Exemple 2. Soit X un champ de vecteurs sur V, n'ayant que des

singularités isolées xl9xr. Soit g < une métrique riemannienne
arbitraire sur U V — {xu xr) et A le champ de vecteurs X/\\ X || sur U.

Il existe alors une unique connexion métrique V sur U telle que VA 0:
si B est un champ de vecteurs unitaires orthogonal à A sur un ouvert
parallélisable W de U, cette connexion V est définie par co(^ ß) 0. Cette

connexion sur U est en particulier plate (dœ(A>B) 0).

Remarque. On peut en particulier supposer la métrique g définie sur

tout V. Admettant alors l'existence de champ de vecteurs X à singularités
isolées sur toute surface compacte V (ou l'existence de fonctions de Morse),
cet exemple 2 prouve que pour toute métrique g sur F, il existe une
connexion plate avec un nombre fini de singularités, respectant g.

Exemple 3. Soient (x1? xr) des points de F tels que l'ouvert
U F - {xu xr} soit parallélisable. Soit (A, B) un champ de repères

sur U, et œ une 1-forme fermée sur U. On définit sur U une métrique g et

une orientation en décrétant le champ de repères (A, B) orthonormé et

direct. On définit une connexion métrique V sur U en posant co(A B) co

(VJB — œA, VA —coB)
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Puisque la 1-forme œ est fermée, la connexion V est plate.
Soient (xl5 xr) les singularités (isolées) d'une connexion plate V

sur V - {xu xr) respectant une métrique g. Soit Px un pavé de V,

inclus dans un ouvert parallélisable Ux ne contenant aucune singularité

sur son bord ôPx, et en contenant exactement une, xx, en son intérieur.

Soient (Ax, Bx) un champ de repères orthonormés sur Ux - {xx}, et

œx cO(ax,bx) la 1-forme fermée sur Ux - {xA} telle que

(.I(AX, xx) indiquant l'indice du champ de vecteurs Ax en xA).

Corollaire. La définition du résidu ne dépend pas du choix du pavé
Px satisfaisant aux conditions requises. (On notera encore Rés (V, xx)
ce résidu.)

Démonstration du corollaire. Si Px est un autre pavé vérifiant les conditions,

les courbes fermés dPx et dPx sont toutes deux de même indice 1 par
rapport à xx (une fois choisie une orientation de Ux). La forme œx étant
fermée, la formule de Stokes permet de conclure :

Quant à la définition de l'indice I (Ax, xx), on la suppose ici connue
(et donc indépendante de Px). [Une définition et étude de cet indice, en
bonne et due forme, pourrait éventuellement être faite ici dans un cours,
si elle ne l'a pas été avant.]

Démonstration du théorème. Soit A un champ de vecteurs sans singularités

défini sur tout l'ouvert Ux (y compris en xx). Posons A' v4/|| A [[

sur Ux - {xx}, et soit Bx le champ de vecteur sur Ux - {xA} déduit de
Ax par rotation de +7i/2 (pour l'orientation de Ux - {xx} définie par
(Ax, Bx)). Soient enfin 9X:UX — {vA} R/2nZ l'angle de rotation per-

VBX cox-Ax,

VAX -œx'Bx

Théorème 4.

1 fRésp V, g) _ cox+I (Ax, xA)
2n J spx
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mettant de passer de (Ax, Bx) à (AÀ, BJ, et œf co(A^B^. De la formule
(v) du § 2, on déduit: cox coÀ + dOx. Du théorème 1, on déduit

Puisque I (AÀ, xÀ) — dOx, le théorème 4 en résulte.
271 J dPx

Remarque. Notons hx e R/27T Z £0 (2)) l'holonomie de la connexion

métrique plate V le long du lacet dPx entourant xk. [Puisque dPÀ n'est pas
simplement connexe dans le domaine Ux de V, cette holonomie n'a aucune
raison d'être triviale.] On vérifie aisément:

La notion de résidu est donc plus précise que celle d'holonomie.

Appliquons le théorème des résidus à chacun des exemples 1, 2 et 3

ci-dessus.

1

hx 27i Rés (V x;) (mod 2n Z).

/
/
/ \

\
\

Exemple 1. Notons y la
courbe de contact du tronc de

cône avec la sphère, <p (0 < cp

< 7i/2) l'angle au sommet du
cône et R le rayon de la sphère.

Par développement du tronc
de cône dans le plan, y se

développe suivant un arc de cercle

d'angle

2n R cos (p
2n sin <p

R cotg cp

Donc

y entourant à la fois les pôles

N et S, mais devant être muni
d'orientations différentes, on
en déduit, avec des notations
évidentes :
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Rés (V, N)1 + sin

Rés (V, S) 1 — sin

Rés (V,iV) + Rés (V, S) 2

Remarque. Pour le cylindre, un calcul analogue donne

Rés (V,JV) Rés (V, 1

car y se développe alors sur le plan suivant un segment de droite de sorte

q"e Ja Pg ds 0.

Exemple 2. Soit X un champ de vecteurs à singularités isolées

(xl9..., xr), et g une métrique riemannienne sur la surface compacte V.

Théorème 5 (Hopf).
r

Z I(X,xx)Xv
A=1

Posons en effet A X/\\ X\\ sur U V — {xu xf\. Soit Ux un
voisinage de xx dans V, et Bk un champ de vecteurs sur Ux — {xx} tel que
(A, BÀ) définisse un champ de repères orthonormés sur Ux — {xA} : par
définition de la connexion métrique plate de l'exemple 2, VA 0, soit

co(a,bx) 0. On déduit du théorème 4 que

Rés (V, xx) I(A,xx) I(X,xx)

d'où le théorème 5, par application du théorème des résidus.

Exemple 3. Nous allons voir un cas particulier de la situation décrite
à l'exemple 3, explicitant le lien entre les résidus des connexions métriques
plates à singularités isolées, et les résidus des fonctions méromorphes.

Soit /: C — {zu zrj -» C une fonction holomorphe. Par compacti-
fication à l'aide d'un point à l'infini, U C - {zu zr) peut encore
être considéré comme S2 — {oo, z1? zr).

Posons :f{z)dz co1 + i œ2 avec

co1 P dx — Qdy
co2 Q dx + P dy
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où P (resp. Q) désignent comme d'habitude les parties réelle et imaginaire
de /, et z x + iy.

ô d
Soit A — et B — et V u V2 les

dx dy
1

» deux connexions métriques associées défi-
I nies sur U respectivement par co1 et co2.

Dire que / est holomorphe signifie que les

formes œ1 et co2 sont fermées, et que par
conséquent les connexions V ± et V2 sont
plates. Le résidu, au sens habituel des fonctions

méromorphes, est donné par

R(f,ZÙ ZT"2in
f(z)dz

yi

2nr J yoo
/(z) dz

Théorème 6.

Rés (Vl5 zÀ) + i Rés (V2, zÀ) i R(f, zÀ)

Rés V, oo) + i Rés (^42, oo) 2 (1 + i) + i R (/, oo)

d ô
Appliquons en effet le théorème 4 avec A —, B —dx dy

1) Puisque le champ de repères (A, B) est prolongeable en tout point z
situé à distance finie, le théorème 4 (ou 1) s'écrit:

Rés (V1? zÀ)

Rés (V2, zÀ)

n
a

CO 1

u

CO 2

et

Rés (v l5 z;J + iRés (V2, z;) LJ /(z)dz iR(f,zx)
VA

2) Puisque /
maintenant :

dx
00 « /

dj;
oo =2, le théorème 4 s'écrit
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1 f—2njv00
Rés (Vi, oo) — a»! + 2

Rés (V2, co) — co2 + 2M271 J

Donc
1

Rés (V1? oo) + i Rés (V2, oo) /(z)dz + 2(1+0
2k

w

i R (f, oo) + 2(1+0

C.Q.F.D.
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