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30 L. WEINSTEIN

Theorem 2. Let q be an even positive integer. Then :

k+i k-i
I S(a1,ak;q)|< 2 2 kv{q) q2 (ax

Estermann, [2], has dealt with the case of the Kloosterman sum.

2. Lemmas

Lemma 1. Consider the congruence :

xk a (mod pm)

where k, m are positive integers, a is an integer, p a prime and (a, p) 1.

Then:

1. If p > 2, this congruence has at most k incongruent solutions mod pm.

2. If p 2 and is odd, then this congruence has exactly 1 solution
mod pm.

3. If p 2, and k 2r I, r > I, I odd, then this congruence has at most
min {2r+1,pm} solutions mod pm.

Proof : This is essentially found on pp. 115, 119 of [3].

Lemma 2. Let p be a prime, and m, n positive integers, y2m <« < m.

Let yu zl9 zk^1 be integers; p f yu P J(yk-i> Define

[yl9 yk~iipm] as that integer y, 0 < y < pm such that y(y± yk_ x)

1 (modpm). Then:

[y1+Pnzi, -;yk-i+pnzk-t;pm][>'i,

- I>i;pm]2 •••[yt-i;?m]p"zi

- lyùPm]••• [yfc-2; pm] [}7c-i;pm]2p"z/^i (mod pm)

Proof: This follows from the relation

!>i;pm](modpm)
and Lemma 1 of [2].
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Lemma 3. Let pbea prime, m, n positive integers, 2« + 1. Let

yu zu -,zk-1 be integers; pyk-uThen

[_p 1 + p"zu •••> yk-i P ] Cj-'I? •••> 1

+ bi;pm]3b2;pm3 •••bt-i;pm]p2"zi

+ EP 1 s P] ••• Sjk-2> P"] [Pfc-1 j pm] P zfc -1

-[Pi;pm]2[P2;pm]-[^-i;pm]p"zi

- bi;pm] • • • b* - 2 ; pm] b* -1 ; pm]Yz* -1

+ bi; pm]2 b2; pm]2 b3; pm] - b,-L pm] p2"ziz2

+ bi; pm]2 b2; pm] - b»-a; pm] b*-i; pmT

+ bi;p'"J b2;pm]2 b3;pm]2 b4;pra] ••• [Lc-i;pm]p2"z2z3

+ bi;pm] b2;pra]2b3;pm] •••bt-2;pm]bt-i;pm]2p2"z2zt-i

+ bi; pm] ••• b*-3; pm] bt-2; pmT bt-i; p2"z*-2z;t-i
(mod pm)

Proof: This follows from Lemma 5 of [2].

Lemma 4. Let p > 2 be a prime, and n a positive integer. Let a, h be

integers. Then:
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£ e(az2p 1 + hzp n *)
O^z < p"

0 p"Jfh

pn+1/* pnI h,

p„+l pn+1
|Ä> p J a

0 p"+V/î, pla.

Proof : The first two parts of this lemma are Lemma 5 of [2]. The last

two parts are trivial.

3. Proof of Theorems 1 and 2

Proposition 1. Let p be a prime, m a positive integer and au ak.,

integers such that

(a1,ak,pm) ak_uak,pm)0 < h

Then
k- 1

S(au ...,ak;pm) (ph) S(atp h,...,akp h;pm h)

Proof: The proof is similar to that of [2], page 85 bottom.

Proposition 2. Let m, n be positive integers l/2m <^n <m, p a prime,
and au...,ak integers such that (auak\pm) 1. Then:

where

I S(au...,ak,pm) I <

k if p > 2

1 if P — 2 and k is odd.
min { 2r+1,pm} if p 2 and k 2rl

r > 1 and I odd

Proof: Let us assume throughout this proposition that S (a u
0, or else we are done.

Now we have the identity

^ak;pm)

s
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