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THE HYPER-KLOOSTERMAN SUM

by Lenard WEINSTEIN

1. INTRODUCTION

Deligne, [1], has recently proved the very deep theorem on the bound of
the Hyper-Kloosterman sum. His estimate results from his solutions of the
strong forms of the Weil conjectures.

The Hyper-Kloosterman sum is defined:

a;x;+... +akxk>

S(al,...,ak;p)=2e< -

where ay, ..., @, a are non-zero elements of the odd prime field F,, and the
summation runs through the k variables x; e F, with the relation [] x;=o.

Deligne has shown:
k—1
IS(a19--'9a'k;p)l<kp 2 ’

] Here, we prove the following generalization for the bound of the Hyper-
§ Kloosterman sum. Define:

a{xXy+...4+a,x
S s = T o (TEAK),

q

§ where a, ..., q, are arbitrary integers, ¢ a positive integer, and the sum-
mation runs through the k variables x;,0 < x; <g¢, x; relatively prime
to ¢, with the relation [ [x; = 1 (mod g).

We show:

THEOREM 1. Let q be an odd positive integer. Then :
ko1
| S(ala vees Ay s q) I < kv(q) q 2 (ala Ak, Q)l/z (ak—-l > A Q)l/z

where v (q) is the number of different prime factors of gq.
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THEOREM 2. Let g be an even positive integer. Then :

k+1 k-1
iS(al,...,ak;q)]\<\2 2 B@Dgq 2 (ag,a,,9)%... (Qp_y1,0,,9)".

Estermann, [2], has dealt with the case of the Kloosterman sum.

2. LemMmMmas

Lemma 1. Consider the congruence:
x* = a (mod p™)

where k, m are positive integers, a is an integer, p a prime and (a, p) = 1.
Then:

1. If p > 2, this congruence has at most k incongruent solutions mod p™.

2. If p = 2 and k is odd, then this congruence has exactly 1 solution
mod p™.

3. If p = 2, and k = 2" [, r > 1, [ odd, then this congruence has at most
min {2"**, p™} solutions mod p™.

Proof : This is essentially found on pp. 115, 119 of [3].

Lemma 2. Let p be a prime, and m, n positive integers, Vo m <n < m.

Let ¥y, ey Vim1s Z15 -5 Zx—1 b€ integers; p f ¥y, «., P £ Yi—1. Define
[Vi, .e» Ve 1; P™] as that integer y, 0 < y < p™ such that y (y; ... yp—1)
= 1 (mod p™). Then:

[J’1 +p"Z15 s V-1 +Pnzk*1§Pm] = [yla cees J/'k—1§l7m]
— [y p™ P [yas p™] o D13 ™1 1"24

~ [ p™] ooe D=5 2™ D= 15 P"17P"24- 1 (mod p™)
Proof : This follows from the relation

[V 0™] o =13 2™] = [V15 eoos e—15 P™] (mod p™)
and Lemma 1 of [2].
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