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THE HYPER-KLOOSTERMAN SUM

by Lenard WEINSTEIN

1. INTRODUCTION

Deligne, [1], has recently proved the very deep theorem on the bound of
the Hyper-Kloosterman sum. His estimate results from his solutions of the
strong forms of the Weil conjectures.

The Hyper-Kloosterman sum is defined:

a;x;+... +akxk>

S(al,...,ak;p)=2e< -

where ay, ..., @, a are non-zero elements of the odd prime field F,, and the
summation runs through the k variables x; e F, with the relation [] x;=o.

Deligne has shown:
k—1
IS(a19--'9a'k;p)l<kp 2 ’

] Here, we prove the following generalization for the bound of the Hyper-
§ Kloosterman sum. Define:

a{xXy+...4+a,x
S s = T o (TEAK),

q

§ where a, ..., q, are arbitrary integers, ¢ a positive integer, and the sum-
mation runs through the k variables x;,0 < x; <g¢, x; relatively prime
to ¢, with the relation [ [x; = 1 (mod g).

We show:

THEOREM 1. Let q be an odd positive integer. Then :
ko1
| S(ala vees Ay s q) I < kv(q) q 2 (ala Ak, Q)l/z (ak—-l > A Q)l/z

where v (q) is the number of different prime factors of gq.
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THEOREM 2. Let g be an even positive integer. Then :

k+1 k-1
iS(al,...,ak;q)]\<\2 2 B@Dgq 2 (ag,a,,9)%... (Qp_y1,0,,9)".

Estermann, [2], has dealt with the case of the Kloosterman sum.

2. LemMmMmas

Lemma 1. Consider the congruence:
x* = a (mod p™)

where k, m are positive integers, a is an integer, p a prime and (a, p) = 1.
Then:

1. If p > 2, this congruence has at most k incongruent solutions mod p™.

2. If p = 2 and k is odd, then this congruence has exactly 1 solution
mod p™.

3. If p = 2, and k = 2" [, r > 1, [ odd, then this congruence has at most
min {2"**, p™} solutions mod p™.

Proof : This is essentially found on pp. 115, 119 of [3].

Lemma 2. Let p be a prime, and m, n positive integers, Vo m <n < m.

Let ¥y, ey Vim1s Z15 -5 Zx—1 b€ integers; p f ¥y, «., P £ Yi—1. Define
[Vi, .e» Ve 1; P™] as that integer y, 0 < y < p™ such that y (y; ... yp—1)
= 1 (mod p™). Then:

[J’1 +p"Z15 s V-1 +Pnzk*1§Pm] = [yla cees J/'k—1§l7m]
— [y p™ P [yas p™] o D13 ™1 1"24

~ [ p™] ooe D=5 2™ D= 15 P"17P"24- 1 (mod p™)
Proof : This follows from the relation

[V 0™] o =13 2™] = [V15 eoos e—15 P™] (mod p™)
and Lemma 1 of [2].
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Lemma 3. Let p be a prime, m, n positive integers, m = 2n + 1. Let
Y1y vees Ve 15 Z1» +ovs Zg— 1 DC IntEErs; p ¥ ¥y, oy P A Yi—1. Then

[ [y +DP"21, ooos V-1 +0"2—13 0™ = [V1s voes Vi—13 P™]
+ [y PP [vas P - [veess D1 D721

2n_2

+ [y 2™ o e P™1 k=13 P" PP 0™ 25 -1
— [y " [y ™ oo k13 2™ P24

— [y 0™ o [z P k=15 PP 0" 201
+ [P [y PP s p™ oo Dk—1s 21 9212,

+ [ 0™ P 2 2™ - k=23 2™ De- 13 P™1% P*" 21 25— 4
+ [ " [v2s PP s 71 [vas P71 - [va-15 ™1 p*" 2223

+ [y ™ 2 PP s p™] oo Wke23 P71 k=15 P17 p*" 22254

+ [J’1§ Pm] [yk—S; Pm] [J’k—zé Pm]z [J’k—1§ Pm:lz pznZk—ZZk—l
(mod p™)

Proof : This follows from Lemma 5 of [2].

B Lemma 4. Let p > 2 be a prime, and »n a positive integer. Let a, & be
B integers. Then:
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0 P X h
p"t% p*|h, pla

Y. e(@z’pTl4hzpT"Y| =

n+1 n+1 +1
0=z <p Pt opt |k, pla

| 0 pP"*"'Yh,pla.

Proof : The first two parts of this lemma are Lemma 5 of [2]. The last
two parts are trivial.

3. ProOOF OF THEOREMS 1 AND 2

PROPOSITION 1. Let p be a prime, m a positive integer and ay, .. a.,
integers such that

(a4, 06, P™) = ... = (@4-1,0,P™) =P O0<h<m.

Then
S(ay, . agp™ = @ S(awp™, ..., ap™" pm "

Proof : The proof is similar to that of [2], page 85 bottom.

PROPOSITION 2. Let m, n be positive integers YVom <n <m, p a prime,
and ai, ..., a, integers such that (ay, a;p™) = 1. Then:

| S(ay, o p™ | < A

where
[ k if p>2.
A =4 1 if p=2 and kisodd.
| min {271, p™} if p=2 and k =21,

r>1 and 1 odd.

Proof : Let us assume throughout this proposition that S (ay, ..., a;; p™)
# 0, or else we are done.
Now we have the identity
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Z F (g, ooy Xg—1)

0< X1y 533> xk_lépm
PAX1s s PA X1
= Y, Y, Fi+DP"zys ey Vi1 +P"Zk-1) -
0 <yls s Vm 1=P7 0=y, ey Zp—1 < P77
PAYLs s PUVE~1
Letting

A1Xq + .o F a1 X1 T ag [x1a cees Xp—15 pm]
pm

f(x1> '“:xk-l) = e <
we see, using Lemma 2
S(ala “f:ak; pm)

. (a1J’1 e+ Om  Vi—1 Fa [V1, -.-,J’k——1§pm]>
pm

O<PLs eoes Vp—1 =D"
PYV1s wes PY V-1

Z e({a; —a; [Y13Pm]2 e -3 2™} PV 20)

O_ézl < pm—h

Z e({ -1 — 4 [yi;p"] .. [J’k—1§Pm]2}Pn—mZk—1) .

0=z;_1 <pm—n
f  Now since we have assumed S (aq, ..., a;; p™) # 0, the inner sums above
W must not equal 0. Thus

m-—n

14 la1 “ak[J’1§Pm]2-~[J7k—1§Pm]

p" l A1 — a4 [yi; p™] .. [J’k—1;Pm]2 .

These congruences imply, since (ay, a;, p™) = 1, also (a,, a,, p™) = ...
= (ay_ 1, a,, p™) = 1, and moreover

pkfag,....,pka.
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Now we have

I S(ay,...,a;;p™) l

~ —mk—

< (prTmEt 3 !
O<y1a-'-9)’k-—-1épn
PYYLs s PY V-1

a; = ag [}’1§ Pm]2 [Yk—1;Pm] (mod p™™")

AGo1 = [y ™) o Vi3 P™])? (mod p™")
= (p)t 3 1

0 <.V1 9 eery J’k— 1 épm_n

PYYLs s PYVR—1

a; = ap[y;p™1% .. k-3 P™]  (mod p™")

a1 = @ [v;p™] - [Vi—1;P™*  (mod p™~")

Now the congruences in the above sum are easily seen to be equi-
valent to :

A1Y1 = 43)5 = ... = Qp_1Yy—1 (mod p™7")

’ mk—1 m—n
y{c E[al;p _-_I az ...ak (mOdp ).

Thus by Lemma 1, the proposition is proved.

ProOPOSITION 3. Let p > 2 be a prime, aq, ..., a, integers?such that
(ay, a, p™) = 1, where m is a positive even integer. Then

k—1
| S(ag, . ap™ | <k@®@™ 2

m
Proof : This is Proposition 2, with n = 7 -
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PROPOSITION 4. Let p = 2, m a positive integer, ay, ..., &, Iintegers
such that (a,, a, p™) = 1. Then:

k—1

I S(ay, ..., a5 p™) l < A, (p™) g

where
[ 1 , if meven, k odd.
min {2"*1, p™} , if meven, k = 2", r > 1,1 odd.
S P , if modd, k odd.
| 2&%1 min {2"*1,p™}, if m odd, k = 2", r > 1, lodd.

Proof : This follows from Proposition 2 withn = m — [1,m].

PROPOSITION 5. Let p > 2 be a prime, ay, ..., a, integers. Then
k—1

3 1 1
IS(ab ---,akQP)I <kp? (ay; ag; p) /2-"(ak—1> g D) 2

| Proof: If p ¥ a, ... a; this is Deligne’s theorem. Therefore suppose,
B without loss of generality that p l iy ey P | ay—;+1 Where i > 1. Thus:

, | S(al,,,,,ak;p) _ (p—-l)i_l Z e <a1X1> Z e <ak-ixk—_i>
. O0<x, ;<p

O0<xy<p p p
= (p— 1 (=

| and so the proposition is proved.

PROPOSITION 6. Let p > 2 be a prime and m > 1 an odd positive
integer. Then :

k—1
IS<a1>“-5ak;pm)| <k(p™) ? (a1aakapm)l/2---(ak—pakapm)l/z-

Proof: Let us assume throughout this proposition that S (ay, ..., a;; p™)

# 0, or else we are done. Let =n > 0.

Now we have the identity:
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z f(x19°“:xk—1)

V 0<x1, ciss xk_lépzn-l_l
p/l/xl, vee s p/}’xk_l
= ) ) FOi+D"24, ey Yeo1 +0"25- 1) -

O<y13 939 9 yk—lél’" Oézl, ves s Zk_._1<pn+1
PYY1s s PXVk—1

Letting

a1x1+...+ak_1x -1 +ak [x R .‘.,x _ ;pm]
F Gigs evs Xmy) = e( et s

we see, using Lemma 3

S(ag,....,a,p™

— Y e <a1y1+"'+ak-1yk—1 +ak[J’1a-~-aJ’k—1§Pm]>
pm

0 Y15 oo J’k-lépn
PYYLs s PV -1

Z e({ay-1 —a[yi;p™] ... [yk—l;pm]z}p_n—lzk—l

-1_2

+ W™ e e-1 0™ awp ™ zi -4

Z e({ay —ak[Y1§Pm]2---[}’k—1;Pm]

Oézl<pn+1

+ ap [y p™? vas ™17 oo Die-15 2™ 220"

+ a [y p" P s p™] e k-3 P™) 2k-1P"} P77 M2y
+ar [y ™R o -1 p™ z5p™Y)

Since S (ay, ..., @, p™) 1s assumed to be non-zero, we see by Lemma 4
that:
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P {a; — a[yi; 0" - [Ve-13P"]
+ a [y p" P 2 ™17 - k=15 P™] 220"

+ a [y "V [y p™ - De-13 p™ P Zy—1D" }

P’ | {ak—-l — a, [y p™] ... [J’k—1§Pm]2} .

Now let us assume (a4, a;, p") = 1. By reasoning similar to that of
Proposition 2, we see that

(aZ’akapm) = e = (ak—-lﬁaka pm) =1,
and that p t a,. Thus by Lemma 4:

| S(ay, ..., a3 p™ |

1/o0k—1
< (p+'y 5 1
0 <¥is e Vg1 =0"
PYV1s o5 PYVk—1

ar = a[ye;p") . [Ve—1: ™  (mod p")

M- = a [y;0™] .. [e-1; p™]*  (mod p*)

Now by reasoning as in Proposition 2 we see p } ay, ..., p ¥ a,_ 1, and

so by Lemma 1:
l S(ala ooy Qs pm) I < kp(n+1/2)k~1 .

Now let us assume
(alﬂakﬂpm) = pha 0<h< n+13

(if this case is possible.)
| Thus p | g, and Lemma 4 now shows:




e s oo by i < i

e ———— R e
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a; = q [Y1;Pm]2 [)’k—ﬂpm] (mod Pn+1)

g1 = ag[y; p"] oo [Ve—1;p™] (mod P,
Thus:

(az, ag, ™) = ... = (@g-1, a4, P") = P*.
Thus by Proposition 1, we have:
S(ays e i3 p™) = p*T"S(@p™h, o ap T P

Now by Proposition 3, 5 and the first part of this proposition, we have:

k-1 k-1 k-1

| S @y, oo p™) | <kp* P 2 = k(™ 2 (P 2 .
Now let us assume
(ala Ay, Pm) =i phl, hl > n +1 .

As in the previous argument we see

(a2>ak’ pm) = ph29 hz > n+1

(ar-1,a,, p™) = Phk_l, hy_i1>n+1.

Let # = min {Ay, ..., ly—1}. We may assume & < m or else the result
is trivial. Now
S(ay, ..., a, p™)

- 3 Y e

O0<y1s voos V-1 épm_h Oézl, v Zk_1<ph

PYVis s PYVE—1
<a1 Di+p" "z) 4+ oo+ ap [y +p" 7z, §Pm]>
p" ’

Now since p™ | a; p™ 7", ..., p™ | a,_1 p™ " and since

[V 4+0" 20, ooy Ve + 0" "z 3 0™ = [V1s oo Vi3 P™ "] (mod p™7h)

we have
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S(ag,...,ax; p™)

' - - . m—h
o h(k—1) Z ap hy1+"‘+akp h[ylﬂ"'byk—lﬂp ]
=D e m—h

0 <Y1y eons V=1 = pm—h p
PYYLs s PAVE—1

= p"* "V S@ap .., ap " p"h.

Now we may assume without loss of generality that h = hj. Thus by
Propositions 3, 5 and the first part of this proposition,

k—1
| S(ag, o ap™ | < kph‘k"l’p(m“h’(‘_z_)
k-1 k—1

=k(m > " * .
PROPOSITION 7. Let p > 2 be a prime, m an even positive integer, and

8a., .., a, integers. Then: -

m - my 2 m\1 ml
l S(ala eees Ags P ) l S k(p ) 2 (ala Ay, D ) 2 oo (ak—la g, D ) 2 .
i@ [roof: Using the identity of Proposition 2 and the results of Prop-
ositions 3, 5, 6, this is proved as Proposition 6.

® ProrosITION 8. Let p = 2, m a positive integer, dq, ..., a, Integers.
& 1hen
i k+1 k—1

T o 1 1

2 k(@M (ay,a, p™ L. (dk-1, a4, P™) &

Proof : This is proved as Proposition 7.

’ l S(a19 veey Aps pm) l \/\ 2

THEOREM 1. Let gq be a positive odd integer. Then for any integers

k—1
lS(al,,,,,ak;q)|<k”(4)q 2 (apakaCI)l/z---(ak—1,ak,C_Z)1/2-

: Proof: We proceed by induction on ¢g. For ¢ = 1 the theorem is trivial.
l Assume the theorem true for all S (by, ..., b3 q), ¢ < q, by, ..., b, integers.
Now consider S (ay, ..., a;; q).
By Propositions 5, 6, 7, we may assume ¢ is not a prime power; hence
there exist odd ¢, g, such that ¢ = g, ¢9,, (91, ¢2) = 1,9, > 1,q, > 1.
Thus there exist integers ay, , ax, such that

. k k
ay = aquz 1= ak2 qi -

By the multiplicative property of the Hyper-Kloosterman sum (see
§ Estermann, [2], p. 86) we have
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S(ags s g1, a459) =S(ay, ..., a1, Akys q1) S(ayg, ..., -1, Arys q2) -
Thus by the inductive assumption

l S(@gy ees Q1,45 q) I
k—1

k—1 . 1
<K (q) 2 (ag,ar,q1) 2o (@r-1, Gy, 41)
k-1

o 1 1
- kv@a2) (q2) * (ay, Qkys 4 2) L. (a1 kg5 q2) &

Since it is easily seen

(ay, akl,éh) (ay, ak2>42) = (ay, a, q)

(ak-la agy » QI) (ak—1> kg » QZ) = (ak—-l’ ag, q)

the theorem is proved.

Theorem 2 is proved similarly.

Note. By symmetry, the (a,, a,, q)” 2 (ay- 1, ay, q)ll2 term in Theorems 1
and 2 may be replaced by

. 1 1 1
min {(a;, az, @) 2 (a3, a, Q) % . (@1, ar, q) 12,

1 1 1
(ay,a5-1,9) % (ay, ar-1,9) 2 o (ag, ai-1,9) /2,

1 1 1
(a25 dj, q) /2(613,01, q) i "'(ak9 as, q) /2} $
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