
Zeitschrift: L'Enseignement Mathématique

Herausgeber: Commission Internationale de l'Enseignement Mathématique

Band: 27 (1981)

Heft: 1-2: L'ENSEIGNEMENT MATHÉMATIQUE

Artikel: THE HYPER-KLOOSTERMAN SUM

Autor: Weinstein, Lenard

DOI: https://doi.org/10.5169/seals-51738

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 21.01.2026

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-51738
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en


THE HYPER-KLOOSTERMAN SUM

by Lenard Weinstein

1. Introduction

Deligne, [1], has recently proved the very deep theorem on the bound of
the Hyper-Kloosterman sum. His estimate results from his solutions of the

strong forms of the Weil conjectures.
The Hyper-Kloosterman sum is defined :

s /ajXi+.-.+a^xA
S(a!, ,ak;p)= \ e I

where al9..., ak, a are non-zero elements of the odd prime field Fp, and the
summation runs through the k variables xt e Fp with the relation Y\ xt (x.

Deligne has shown:
k- 1

I S(a1,ak;p)| <

Here, we prove the following generalization for the bound of the Hyper-
Kloosterman sum. Define:

e. v V (a1x1+...+akxk\S {a1, ah; q) £ e J

where al9 ak are arbitrary integers, q a positive integer, and the
summation runs through the k variables xt, 0 < xt < q, xt relatively prime
to q, with the relation 1 (mod q).

We show:

Theorem 1. Let q be an odd positive integer. Then :

k- 1

I S(«i, ,ak\q)I< kv(q)q2 q)Vt... (at_i,

where v (q) is the number of different prime factors of q.
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Theorem 2. Let q be an even positive integer. Then :

k+i k-i
I S(a1,ak;q)|< 2 2 kv{q) q2 (ax

Estermann, [2], has dealt with the case of the Kloosterman sum.

2. Lemmas

Lemma 1. Consider the congruence :

xk a (mod pm)

where k, m are positive integers, a is an integer, p a prime and (a, p) 1.

Then:

1. If p > 2, this congruence has at most k incongruent solutions mod pm.

2. If p 2 and is odd, then this congruence has exactly 1 solution
mod pm.

3. If p 2, and k 2r I, r > I, I odd, then this congruence has at most
min {2r+1,pm} solutions mod pm.

Proof : This is essentially found on pp. 115, 119 of [3].

Lemma 2. Let p be a prime, and m, n positive integers, y2m <« < m.

Let yu zl9 zk^1 be integers; p f yu P J(yk-i> Define

[yl9 yk~iipm] as that integer y, 0 < y < pm such that y(y± yk_ x)

1 (modpm). Then:

[y1+Pnzi, -;yk-i+pnzk-t;pm][>'i,

- I>i;pm]2 •••[yt-i;?m]p"zi

- lyùPm]••• [yfc-2; pm] [}7c-i;pm]2p"z/^i (mod pm)

Proof: This follows from the relation

!>i;pm](modpm)
and Lemma 1 of [2].
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Lemma 3. Let pbea prime, m, n positive integers, 2« + 1. Let

yu zu -,zk-1 be integers; pyk-uThen

[_p 1 + p"zu •••> yk-i P ] Cj-'I? •••> 1

+ bi;pm]3b2;pm3 •••bt-i;pm]p2"zi

+ EP 1 s P] ••• Sjk-2> P"] [Pfc-1 j pm] P zfc -1

-[Pi;pm]2[P2;pm]-[^-i;pm]p"zi

- bi;pm] • • • b* - 2 ; pm] b* -1 ; pm]Yz* -1

+ bi; pm]2 b2; pm]2 b3; pm] - b,-L pm] p2"ziz2

+ bi; pm]2 b2; pm] - b»-a; pm] b*-i; pmT

+ bi;p'"J b2;pm]2 b3;pm]2 b4;pra] ••• [Lc-i;pm]p2"z2z3

+ bi;pm] b2;pra]2b3;pm] •••bt-2;pm]bt-i;pm]2p2"z2zt-i

+ bi; pm] ••• b*-3; pm] bt-2; pmT bt-i; p2"z*-2z;t-i
(mod pm)

Proof: This follows from Lemma 5 of [2].

Lemma 4. Let p > 2 be a prime, and n a positive integer. Let a, h be

integers. Then:
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£ e(az2p 1 + hzp n *)
O^z < p"

0 p"Jfh

pn+1/* pnI h,

p„+l pn+1
|Ä> p J a

0 p"+V/î, pla.

Proof : The first two parts of this lemma are Lemma 5 of [2]. The last

two parts are trivial.

3. Proof of Theorems 1 and 2

Proposition 1. Let p be a prime, m a positive integer and au ak.,

integers such that

(a1,ak,pm) ak_uak,pm)0 < h

Then
k- 1

S(au ...,ak;pm) (ph) S(atp h,...,akp h;pm h)

Proof: The proof is similar to that of [2], page 85 bottom.

Proposition 2. Let m, n be positive integers l/2m <^n <m, p a prime,
and au...,ak integers such that (auak\pm) 1. Then:

where

I S(au...,ak,pm) I <

k if p > 2

1 if P — 2 and k is odd.
min { 2r+1,pm} if p 2 and k 2rl

r > 1 and I odd

Proof: Let us assume throughout this proposition that S (a u
0, or else we are done.

Now we have the identity

^ak;pm)

s
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£ /(*!,
°<xl xk-l^Pm

PXX1 PXxk-1

yfc_

vxyi> •••'

Letting

/^i^i + ••• +^-1^-1 +% [xiJ •••> xfc-ij I7]
/(%!, e

we see, using Lemma 2

S(a1?..., ak; pm)

I
yfc_la5Ép"

/+ +%-iyfe-l bl> •••' yk-ll pm~\

\ V
0<y1, yjç-1 ^pn v

£ e({at -a*[y1;pm]2...|>t_1;pm]}pn"zj)
< pm~n

0^zÄ_1<pm-"

Now since we have assumed £ (#l5..., pm) ^ 0, the inner sums above
must not equal 0. Thus

-nm"]2Tm_"k - aklyùpmr

pm "k-i -%[j'i;pm]-[yft-i;Jpm]2.

These congruences imply, since (a1,ak,pm) 1, also
(ak_ 1; ak,pm) —1, and moreover

pjfau ...,pjfak.
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Now we have

I S(au ...,ak;pm) |

<(pm~n)k-1 E 1

0 <yi» •••» Vk-i ^pn

pjfyi ' •••' vX^k-1

nm~12fljkbi;pM]2...bfc-i;pm] (modpw n)

flfc-i «fcbi;pm]-bfc-i;^m]2 (modpm n)

(Z)*"1 Z i
0 < )>i yk_ 1 ^pm~n

p/yi> p/yfc-i

«1 ^bi;pm]2 pm] (mod p»--)

fljkLvi;pm]...bjk-i;Jpm] (modpm n)

Now the congruences in the above sum are easily seen to be
equivalent to :

fliPi a2y2 ak_1yk_1 (mod

y\ [a1;pm~]k~1 a2...ak(modpm_").

Thus by Lemma 1, the proposition is proved.

Proposition 3. Letp > 2 be a prime, ay,..., ak that

(al9 ak,pm) 1, where m is a positive even integer. Then

}S(a1,...,ak;pm)\<k(p'»)hr

m
Proof: This is Proposition 2, with n —
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Proposition 4. Let p 2, m a positive integer, au ak integers

suchthat (al9ak9pm) 1. Then:
k-1

where

1 if m even, /c odd.

min {2r+1,pm} if m even, fc 27, r > 1, I odd.

i4i=
2 2 if m odd, k odd.

k- 1

2 2 min {2r+1,pm}, z/ m odd, k 27, r > 1, Z odd.

Proof: This follows from Proposition 2 with n m — [ ^m].

Proposition 5. p > 2 be a prime, a1? integers. Then

k- 1

I S(al5 I < fep 2 (a

Proof: If p X ••• #/c this is Deligne's theorem. Therefore suppose,
without loss of generality that p | ak9 ...,p | ak_i+ x where i > 1. Thus:

S(au...,ak;p) =(p-iy-i £ e fef) £ e
0<^X<P \ p J 0 <xk_i<p \ p

(p-iy-1

and so the proposition is proved.

Proposition 6. Let p > 2 be a prime and m > 1 an odd positive
integer. Then :

k- 1

I S(al5ak,pm)I {auak, ...(ak-uak,

Proof: Let us assume throughout this proposition that S(al9 ak9 pm)

m — 1

^ 0, or else we are done. Let n > 0.
2

Now we have the identity:
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Z /Ol> —,X*-l)
0 <xJJ ^p2n+1

p/*i
Z Z /(^i+/zi,

0 < yi J 9 9 9 9 iVfc- 1 ^PW 0 r^Z^, Z£_ J < jPW+ 1

p/yi, p/yk-i

Letting

/a1x1 + ...+at_1xfc_1+at[x1,...,xjfc_1;j>m]
e ^ —

we see, using Lemma 3

S(au ...,ak;pm)

alyl+...-)rak-1yk-1+ak[yl,I el ro<j>i yk-i^p" K y

p/yi p/)>k-i
Z - aklyl;pm]...[yk-1l;p"c]2}p "l

+ l>i;pm] - \yk-i,pmf akp~lzl_1)

0 ^zk_1<pn+1

Z e({at - ak[y1;pm']2 ...[yk-1;pm~]

< pn+1

+ ak [yi;pmT [y2; Pmf pm] z2p'

+ ak[y±;pmVly2;pm']-lyk-i;pmTzk-lp''} p-"-1^
+ ak[y1;pm']3 [j^;j>m] zip-1)

Since S(au ak,pm) is assumed to be non-zero, we see by Lemma 4

that:
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pn\{a1 - ak[y1;pmY ...\_yk-1;pm']

+ ak Oi; pm]2 [y2ipmT... 0*-i; Pm]

+ ak \_yx; Pmf [y2; pm] ...h'k-ùzk-iP"}

i>" - «fcI>i;pm] -l>*-i;pm]2} •

Now let us assume (auak,pm) 1. By reasoning similar to that of
Proposition 2, we see that

(a2,ak,pm) (ak-1,ak,pm)

and that p X ak. Thus by Lemma 4 :

I S(au...,ak;pm)|

< (p"+1/2)*_1 £ 1

0 <>'i

pin

aiak [yx;pm]2Pm] (mod p")

ak-i aklyùPm~] ••• b/t-i;pm]2 (mod p")

Now by reasoning as in Proposition 2 we see p I ...,p X ak_u and
so by Lemma 1 :

\S(a1,...,ak;pm)\<kpC+1^k-1

Now let us assume

(a1,ak, pm)ph,0< + 1,

(if this case is possible.)
Thus p I ak, and Lemma 4 now shows :
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ai ak[y1;pm']2...[ä-i;pm] (mod

ak-i ak[y1;pm']...[yfc-i;pm] (mod/+1).
Thus :

(a2,ak,pm) /.
Thus by Proposition 1, we have:

S(au ...,ak;pm)p(k~1)h S (a^",akp~h; pm~h)

Now by Proposition 3, 5 and the first part of this proposition, we have:

7c-1 7c-1 Tc-J.

\S(a1,...,ak,pm)\<kp«<-1»(pm-h)^r =k(pm)^(ph) 2

Now let us assume

(au ak, pm)Z1, > n +1.
As in the previous argument we see

(a2, pm)/2, ft2 > n +1

0ak-i,ak,pm)=/*"!, ftfc-j > n + 1

Let h min {/zl5 hk_ ±}. We may assume h < m or else the result
is trivial. Now

S(ak, ...,ak,pm)

0<)>i yk-ki^Pm h 0^zx zfc_

pjfy ipX»k-i
«1 (.Fl +Jpm~*zi) + + <h [yt + ffm~''zi,... ; Pm]

/>"'

Now since pm | atpm~h,pm \ak-1 pm~hand since

\_y1+pm'hzu ...,yk^1+pm~hzk^1;pm'] s pm-A] (mod pm_A)

we have
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S(au...,a)/flif'Vi + - +«tP~* yt-isp" *]
P 2./ M

o<»! yk-i^Pm-h V -P

P/ju. -, pfyjc-i

ph^k~1) S(alP~h9 akp~h\ pm~h)

Now we may assume without loss of generality that h ~ h1. Thus by

Propositions 3, 5 and the first part of this proposition,

c^)|s(«i I

k-1 k— 1

(Ph) ~2~

Proposition 7. Let p > 2 be a prime, m a« evp/z positive integer,

au...,ak integers. Then :
^ ^

I S(a1; ...,ak;pm)|< 2 {ak_u

Proof : Using the identity of Proposition 2 and the results of
Propositions 3, 5, 6, this is proved as Proposition 6.

Proposition 8. Let p 2, m a positive integer, a1? ^ integers.
Then

fc+i fc-i
S(a1; I < 2 2 fc(pm) i2 (a(at_1;

Proof : This is proved as Proposition 7.

Theorem 1. Let q be a positive odd integer. Then for any integers

au •••> ak •*

fc — l
\S(a1,.,.,ak;q)\<kv(q)q2

Proof: We proceed by induction on q. For q — \ the theorem is trivial.
Assume the theorem true for all S (bu bk; q'), q' < q, bu ...,bk integers.

Now consider S (au ak; q).

By Propositions 5, 6, 7, we may assume q is not a prime power; hence
there exist odd qu q2 such that q qt q2, (ql9 q2) 1, #i > 1, q2 > 1.

Thus there exist integers Okx, such that

ak — cik-^q^ + ük2 q\

By the multiplicative property of the Hyper-Kloosterman sum (see
Estermann, [2], p. 86) we have
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S(#l, J Ujç, (j) S •••? #fcp S (öf1? 1 5 ^2) •

Thus by the inductive assumption

I S(al9..., flfc-!, flfc; q) J

ft- 1

< k.v(qi)(qj2 (ci1,akvq1)1/2
ft- 1

kv^2)(q2) 2 (a1,ak2,q2)1'2

Since it is easily seen

(#1, flfcp ^x) (#1? #ft2? #2) ~ OU > ^ft>

(flft-l? ^ftl J #l) (ßft-l? ak2 5 ^2) (ak-l9ak9 0)

the theorem is proved.

Theorem 2 is proved similarly.

Afote. By symmetry, the (al5 #)1/2... (afc_ 1?
#)1/2 term in Theorems 1

and 2 may be replaced by

min {(alsafc, q)1'2 (a2, ak, q)1'2(at_l5

(a1,ak„1,q)1'2 (a2, q)1'2... (ak, ak^uqf'2

(a2, al5 g)1/2 (a3, als çr)1/2... (ak, }
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