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On peut raisonnablement conjecturer que pour & assez petit, la fonction
n+>n — d(n)® a une infinité de points d’étranglement, mais il semble peu
- vraisemblable que ce soit encore vrai pour ¢ = 1. D’aprés le théoréme
des nombres premiers, on peut voir que pour n = 2-3:..p,
n — (o (n) log n)*™ est négatif, et donc cette fonction n’a qu’un nombre
fini de points d’étranglement. On ne peut pas démontrer que n — ® (n)°™
n’a pas de points d’étranglement: La raison en est qu’il n’y a pas de résultats
non triviaux pour la question suivante: Quel est le plus petit 7, tel que
wm+tt) >k. On a évidemment 7, <<2-3-...p, et malheureusement,
nous ne pouvons améliorer ce résultat. C’est une question beaucoup plus
importante que 1’étude de n — w (n)°™.

Il n’est pas difficile de montrer que si z est un point d’étranglement pour
la fonction n — w (M)°™, alors w (n) < (log n)'/?*% 11 semble vraisem-
blable que pour n > n,, il existe m > n avec m — o (M)*™ < n et méme,
m— o m)P™ < n— ™M 7% e qui montrerait que le nombre de
points d’étranglement est fini. Peut-&tre, pour tout n > n,, existe-t-il un
m>n tel que m — d(m) <n — 2. On a besoin de n — 2, parce que

min  m — d(m) <n — 2, mais on ne sait rien a ce sujet.
m=n-+1,n+ 2

Enfin, il est facile de voir que toute fonction additive qui posséde une
infinité de points d’étranglement est croissante, et donc (cf. [Erd 3] et
[Pis]) proportionnelle au logarithme: La démonstration suivante a été
proposée par D. Bernardi et W. Narkiewicz.

Soit f additive ayant une suite infinie n; < n, < ... n, < ... de points
d’étranglement et a < b. On peut trouver, pour », assez grand, dans ’inter-

n, My

valle ( > —) un nombre ¢, premier a ¢ b; on aura alors
a

ca<mn<ch,
ce qui entraine
() +fla) <f(n) <f(c) +f(b)
et f(a) < f ().
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