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x log U \
si r3/2 < u < rlog log r, on a: P (u, r) > r + avec X - 8 + ^ \

permet de montrer qu'il existe a > 0 tel que < A- ('+ w) 0n
peut prendre a 0, 000974.

Propriété 4. Soit n un nombre co-intéressant, «>(/:— 1) ^ alors

(o (n) > k. Cela entraine qu 'un nombre œ-intéressant compris entre Ak

et Ak+1 a plus de {Je— 1) facteurs premiers.

Démonstration. Soit /z >(£-1)^ vérifiant m (/z) < k - 1 ; on écrit

^n < Ak t, t entier.

On a donc t > k. Ce nombre n ne peut pas être co-intéressant puisque

co (n) k — 1 /c co (Akt)

n Ak (t — 1)

Conjecture: Peut-on remplacer n fi*(k-l) Ak par n > (1 +e{k)>)Ak avec
lim 8 (fc) 0?

fc-> + oo

Finalement, on voit que l'ensemble des nombres co-intéressants coïncide

presque avec l'ensemble des nombres co-largement composés: Les deux
ensembles ont une infinité de points communs, mais il existe une infinité
de nombres co-largement composés non co-intéressants (exemple :

n (.Pk+1 ~ 1) Ak par la propriété 2) et la propriété 3 fournit un exemple
de la situation inverse.

§ 5. Démonstration du théorème 4

Proposition 3. Posons Nk (x) card {n < x | co (n) > k). Pour a
fixé, a > 1, on a lorsque x -> + oo (avec les notations de l'introduction)

M- 1 F(a)ri+cictog-ïx{l+0(1/log log x))
iV [a log log x] W — r „ -i

a " ~
V 2n a1 (logx)1 ^^/loglogx

ou {>'} désigne la partie fractionnaire de y.
F (a)Pour 0 < a < 1, laformule ci-dessus est valable I en remplaçant

F(a)\ V a_1
par - jpour estimer card {n<x | œ(n<a log log x}.
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Démonstration (communiquée par H. Delange). Soit Px (z) £
n^x

Le théorème des résidus montre que:

Nk(x) — r —p*^ dzky ' 2in Jy(z-l) zk+1

où y est un cercle de centre 0 et de rayon r > 1. On applique la formule de

Selberg (1)

,r
1 f zi?(z)x(logx)z_1

W'w 2^j, (z-1) z"1
avec

D \ -
1 f 0(x(logx)Rez"2)

_
/x(logx)r~2\

l(x) 2/71J
„ (z-1) zt+1

Z
V (r-l)rk j

z F (z)
On pose G (z). G est holomorphe en z r et l'on écrit

z — 1

G (z) G (r) + (z — r) G' (r) + (z - r)2H (z, r)

avec if (r, r) ^ G" (r). Par la formule de Taylor, il existe A, 0 < A < 1

tel que if (z, r) ~ G" (Az + (1 — A)r).La fonction if est donc continue et

if (z, r) est bornée uniformément pour z e y, 1 < r% < r < r2. On pose

log log x /. On obtient

1 f x G (z)ez*

NM=2^Txl^-dZ+R^
1 / f xG(r)ezl x(z — r) ez(G' (r) \

— ^ dz + ;+1 -dz + x) + R2(x)
2l7clogx\Jy Z Jy Zfc+1 /

" to^GWL! +EhG'w ((TZijl "" ïï)+i,'w+1,'w'
k

On choisit r - de telle sorte que le coefficient de G' (r) s'annule, et

on a
1 f x

RoM ; rr; dz
2Î7Z log x Jy z

1

Si l'on pose z r ë0, on a | z - r |2 | ezl | 2r2 (1-cos 9) erlcose.



NOMBRE DE FACTEURS PREMIERS 21

On peut montrer que, lorsque a-+ + oo, on a jo"(l—cos 6)

O(eV.~3/2) (cf. par exemple, [Dieu], ch. IV). On en déduit que

x erl
R2(x)

O-\logx r"-1'2
et finalement

x lk x
Nk(x) ïoil G(r) ~kï+ ° (toil 7 J + O

(r_1)r*

On pose k — [a log log x],r= — <x,+ o( ], on a donc G (r)
I \log log x /

G (a) 1 + O - on évalue chacun des termes ci-dessus (en particulier

kl par la formule de Stirling: kl ~ kk e~k y/ Ink) et on obtient la
proposition 3.

Lorsque 0 < a < 1, on suit la même méthode, en intégrant sur un cercle
k

de rayon r - < 1.

Proposition 4. Soit (n0, A) 1, et a > 0. Alors on a, avec d{ri) £ 1,
d | n

(0 Z d(n)<Bf 1 + Log x\+
n= riQ mod A ^ \ ^ J

n ^ x

(,i) Ks^(i(i+HtV7n= riQ mod A \ o s \ \ /
n ^ x

(o ('0 ^ a log log x

Enparticulier cette dernière somme est O — f—-— |

V (log 108 2-1 J
H

A O (v/ x).

Démonstration. La formule (ii) est une conséquence immédiate de (i): Les
nombres pour lesquels eu («) > a log log x vérifient d (n) > 2°'<n> soit
d (n) > (log x)a log 2.

On a

Z à(n)< E E 2< E 2 E 1.

V7 «»»Ojnoc
d\n n^x

n n0 mod A n n0 mod A d ^ d ^ n n0 mod An^x n^x y n a ^ y/ x d^n
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Or les nombres n sur lesquels s'effectue cette dernière sommation vérifient
n n0 + y A 0 mod d. Si (A, d) 1, cette congruence a une solution
et une seule en y dans chaque intervalle de longueur d. Si (A, d) ^ 1, pour
que cette congruence ait une solution, on doit avoir (A, d) | n0, d'où
(A, n0) ^ 1 ; il n'y a donc pas de solutions. Finalement, il y a au plus une
solution dans chaque intervalle de longueur d et la somme est

<^2(s + 1)<2VÏ + T(1 + M-
Remarque. Dans le cas A 1, a 2, on trouve dans l'estimation (ii) le

même exposant pour log x que dans la proposition 3. Ceci est à rapprocher
du fait que (cf. [And])

Y d (n) ~ x log x
ft ^ x ; co (n) ~ 2 log log x

Par des méthodes plus compliquées, il est possible d'obtenir pour (ii)
une meilleure majoration.

Lemme 2. Soit M (atj) une matrice à m lignes et n colonnes à coefficients

dans un corps K. Soit 0 une partie de K et soit Lt le nombre

d'éléments de la /eme ligne de M qui sont dans 0. Alors il y a au moins
m

n — Y colonnes de M dont tous les éléments sont dans K — 0.
i= 1

Démonstration. Soit Cj le nombre d'éléments de la yeme colonne qui sont
dans 0. On a

n m n n

S Cj Z Lt et X 1 y 1 > n - y Cj-
J 1 i — 1 1 ^ 7 ^ ft 1^7£=» 7 1

Cj 0 Cj*0
m

«- I U-
i 1

Proposition 5. Supposons que pour n assez grand, il existe k > 0 et

j < n tel que

i) k < œ (n),

ii) co (n) <j,
iii) co (n-r) >j pour r 1,2, ...J - 1,

iv) co (n + s) <k pour s 1, 2, [2 log n].

Alors n est un point d'étranglement pour la fonction n i-> n — co (n).
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Démonstration. Soit m < n.

Ou bien on a m < n — j et d'après ii), m — co (m) < n — j < w — co (n),

ou bien on a n m + r avec 1 < r <j — 1 et iii) et ii) donnent

m — co (ni) < m — j < m — co (n) < n — co (n).

Soit maintenant m > n.

I Ou bien on a m > n + 2 log n et en remarquant que pour tout entier m,
S log m 3

^ jIon a co (m) < < - log m, on obtient, pour n assez grand :

':! log 2 2

1 3 3

m—co (ni) > in — ~ log m > n + 2 log n — - log (n + 2 log n)

> n > n co (n),

| par la croissance de la fonction x f-> x — - log x.

i Ou bien on a m < « + [2 log «] et iv) donne alors

j co (m) < k < co (n)

| ce qui entraîne
j

I m — co (m) > n—co (ri)

| Démonstration du théorème 4. La méthode suivante est celle de [Erd 2].
J Pour assurer les hypothèses i) et iii) de la proposition 5, on va demander à

ïj n d'être solution du système de congruences

n 0

n 1

mod B0

mod Bx

n j — 1 mod

où B0 est un produit de k nombres premiers et Bl9 Bj_ 1 des produits
de j nombres premiers. On pose

a n Bt.
i 0
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D'après le théorème chinois, les solutions de ce système de congruences
sont de la forme

h n0 + y A avec 0 < rc0 < ^4 et y e N.

On se donne x assez grand. On choisit

k [3 log log x], j [6 log log x].

On prend les facteurs premiers de B0) Bj_ l distincts et compris entre
3 log x et 4 log x, ce qui est possible d'après le théorème des nombres

premiers. On a donc:

log A < 6 (log log x)2 log (4 log x) O (log log x)3

Maintenant, pour 1 < s < 2 log x, grâce au choix des facteurs premiers
de A on a, pour la solution n0 des congruences

(n0+s, A) 1

et (n0,A) B0

x
Considérons le tableau (as A 0 < s < 2 log x, 0<y< — — 1 défini parA

as,y co(n0+s+yA) si s#0,
>o +yA\ nCD SI 5=0.

Bo

D'après la proposition 4, la 5ieme ligne de ce tableau contient au plus

x 1

O
A (log x)3 log 2 1

x
termes supérieures à 3 log log x. D'après le lemme 2, il y a — (1 + o (1))

jCJL

colonnes y pour lesquelles

œ (n0 + 5 +y A) < 3 log log x pour s 1,..., 2 [log x]
œ (n0 +y A) < 6 log log x pour 5=0.

Pour une de ces valeurs de y, n n0 + y A vérifie les 4 hypothèses de la

proposition 5 et est donc un point d'étranglement de la fonction

n\-> n — œ (ri).
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On peut raisonnablement conjecturer que pour e assez petit, la fonction

n — d (n)s a une infinité de points d'étranglement, mais il semble peu
vraisemblable que ce soit encore vrai pour 8=1. D'après le théorème

des nombres premiers, on peut voir que pour n 2 • 3 • pk9

n - (co (ri) log n)œ(n) est négatif, et donc cette fonction n'a qu'un nombre

fini de points d'étranglement. On ne peut pas démontrer que n — co (/2)co(n)

n'a pas de points d'étranglement: La raison en est qu'il n'y a pas de résultats

non triviaux pour la question suivante: Quel est le plus petit tk tel que
co(n + t^)^k. On a évidemment < 2 • 3 • ...et malheureusement,

nous ne pouvons améliorer ce résultat. C'est une question beaucoup plus

importante que l'étude de n — co (n)oj(n\

Il n'est pas difficile de montrer que si n est un point d'étranglement pour
la fonction n — œ (ri)1w(n)? alors co (ri) < (logn)1/2 + E. Il semble vraisemblable

que pour n > n0, il existe m > n avec m — co (m)co(m) < n et même,

m — oo (rn)co(m) < n — e(logn)1 £? ce qui montrerait que le nombre de

points d'étranglement est fini. Peut-être, pour tout n > n0, existe-t-il un
m > n tel que m — d (m) < n — 2. On a besoin de n — 2, parce que

min m — d (m) < n — 2, mais on ne sait rien à ce sujet.
m n î,n + 2

Enfin, il est facile de voir que toute fonction additive qui possède une
infinité de points d'étranglement est croissante, et donc (cf. [Erd 3] et

[Pis]) proportionnelle au logarithme: La démonstration suivante a été

proposée par D. Bernardi et W. Narkiewicz,
Soit / additive ayant une suite infinie nx < n2 < nk < de points

d'étranglement et a < b. On peut trouver, pour nk assez grand, dans l'inter-

tl nk nk \valle —t — un nombre c, premier à a b ; on aura alors

c a < nk < cb

ce qui entraîne

/(c) +/(a) <f(nk) </(c) +f(b)
etf (a) < f(b).
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