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permet de montrer qu’il existe a > 0 tel que n" < 4, <1 + o +a> . On
k

@ peut prendre o = 0, 000974,

Propriété 4. Soit n un nombre w-intéressant, n >(k—1) A, alors
w (n) >k. Cela entraine qu’un nombre c-intéressant compris entre Ay
et Ay, aplusde (k—1) facteurs premiers.

Démonstration. Soit n > (k—1) 4, vérifiant o (n) <k — 1; on écrit
A, (t—1) <n < A, t, fentier.

On a donc ¢ > k. Ce nombre n ne peut pas €tre w-intéressant puisque
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Conjecture: Peut-on remplacer n > (k—1) A, par n > (1+¢ (k)) 4, avec
lim &(k) =

k= + o

Finalement, on voit que I’ensemble des nombres w-intéressants coincide
presque avec l’ensemble des nombres w-largement composés: Les deux
ensembles ont une infinité de points communs, mais il existe une infinité
de nombres w-largement composés non w-intéressants (exemple:
n = (pr+1—1) Ay par la propriété 2) et la propriété 3 fournit un exemple
de la situation inverse.

§ 5. DEMONSTRATION DU THEOREME 4
§ PRrROPOSITION 3. Posons N, (x) = card {n <x [ w () > k}. Pour «
fixé, a > 1, onalorsque x — + oo (avec les notations de [’introduction)
1 F (o) L&+ (aloglogx) x(1+0(1/loglog x))
NE (log x)l‘”“l"g“\/loglogx

ot {y} désigne la partie fractionnaire de 3.

N[a log log x] (X) =

F (2)

Pour 0 < o < 1, la formule ci-dessus est valable (en remplagant
F (o)

—

| par ) pour estimer card {n <x | (n) <o loglog x}.
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Démonstration (communiquée par H. Delange). Soit P, (z) = Y, z°™.
n=x

Le théoréme des résidus montre que:

1 P.(z)
N () = 2in L (z—1) ! dz

ou y est un cercle de centre 0 et de rayon r > 1. On applique la formule de
Selberg (1)

1 zF (z)x(log x)* !

N - d R 3
€ () 2in J, (z=1) ! Z+ R
avec

1 0 1 Rez—2 1 r—2

Ry = o [ QB0EITR o (Xloexl

2in ), (z—1)z (r—1)r
zF (2) .
On pose = G (2). G est holomorphe en z = r et I'on écrit

Z —

G(z) = G() +(z=1) G () +(z=1)H(z,7),
1
avec H (r,r) = 3 G" (r). Par la formule de Taylor, il existe 1,0 <1< 1

1
tel que H (z,7)= 5 G" (Az+ (1 —2)r).La fonction H est donc continue et

H (z, r) est bornée uniformément pour zeyp, 1 < r; <r <r2. On pose
log log x = . On obtient

N (x) =

zl
1 J‘ x G(2)e dz + R, ()
y

2im log x Aol

2\ pzl P N P VI
=__1__<fka(#dz+ Jx(z ’LiG mdz) + R{(x) + R, (x)
Y b4

z

2it log x 5 z
TSI, G’()( i ! + Ry () + R, (x)
= r —_ X .
gz % T iog k—D! k! L 21

k
On choisit r = T de telle sorte que le coefficient de G’ (r) s’annule, et

ona

R, (x) = dz

z

1 J x(z=r)*H(z,7)e”
y

2in log x e

Si l'on pose z = re”, ona |z —=r|*|e"] = 2r*(1—cos ) " "
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On peut montrer que, lorsque o — + o0, on a [ (1—cos 0) e*°*°df
= 0 ("0~ 3/?) (cf. par exemple, [Dieu], ch. IV). On en déduit que

. X erl
R, (x) = O log x P12 k=12
et finalement

. lk % erl X (log x)r—Z
N, (x) = I G(r)ﬁ + O ( [312 Jk=1/2 ) + 0 < (r—1) ¥

og X log x

1
=q+ O —— |, on a donc G (r)
loglog x

1 , :
= G (o) ( 1+ 0O (l_>> , on évalue chacun des termes ci-dessus (en particu-

k
On pose k = [xlog log x],r = 7

| lier k! par la formule de Stirling: k! ~ k* e™* \/ 2rnk) et on obtient la
2 proposition 3.
Lorsque 0 < o < 1, on suit la méme méthode, en intégrant sur un cercle

de rayon r = 7 < 1.

S et e s Tt S

PROPOSITION 4. Soit (ny, A) = 1, et a > 0. Alorsona,avec d(n) = Y 1,
d|n

I 2x 1 _

¥ 0O > d(n) < —<1+—logx>+2\/x,

g n=ng mod A A 2

1 2x 1 _
o 1 < X1t Z1osx ) + 2. %

3 ) nsnozmodA " (logx)=e? ( A ( T30 ) X )
n=x

q o (1) = a loglog x

: } 1

¥ En particulier cette derniére somme est O | — o= | lorsque
% A (log x)* '8

4 = O(\/;)_-

Démonstration. La formule (ii) est une conséquence immédiate de (i): Les
nombres pour lesquels  (n) > o log log x vérifient d (n) > 2°™ soit
d(n) > (log x)*'& 2,

Ona
Y dm< Y Y 2< Y 2 Y 1.
nsnni)én;odA nEnnEén.IdeA dé\/: dé\/? n:—:g(l)nmodA

d|n n=x
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Or les nombres n sur lesquels s’effectue cette derniére sommation vérifient
n=ny,+yA =0modd. Si(4,d)= 1, cette congruence a une solution
et une seule en y dans chaque intervalle de longueur d. Si (4, d) # 1, pour
que cette congruence ait une solution, on doit avoir (4, d) | ny, d’ou
(4,n,) # 1; il n’y a donc pas de solutions. Finalement, il y a au plus une
solution dans chaque intervalle de longueur d et la somme est

2x 1

< Y 2 _+1 <2 Jx+— [ 1+ =logx|.

_ \Ad A 2
déx/

Remarque. Dans le cas A = 1, « = 2, on trouve dans I’estimation (ii) le

méme exposant pour log x que dans la proposition 3. Ceci est a rapprocher

du fait que (cf. [And])

Y d(n) ~xlogx .

n=x; o(n) ~ 2loglog x

Par des méthodes plus compliquées, il est possible d’obtenir pour (ii)
une meilleure majoration.

LEMME 2. Soit M = (a;;) une matrice & m lignes et n colonnes a coeffi-
cients dans un corps K. Soit P wune partie de K et soit L; le nombre
d’éléments de la i*™ ligne de M qui sont dans P. Alors il y a au moins

Y. L; colonnes de M dont tous les éléments sont dans K — 2.
i=1

Démonstration. Soit C; le nombre d’éléments de la 7™ colonne qui sont
dans £. On a

n m n n

 C= Y L et Y 1l=n—- ) 1>n- C;

ji=1 i=1 l=j=n 1=j=n i=1
C]=0 ]:’&0

PROPOSITION 5. Supposons que pour n assez grand, il existe k > 0 et
j <n tel que

i) k <o),

i) o (n) <jJ,
i) w(m—r)>j pour r=1,2,..,j—1,
iv) w (nt+s) <k pour s =1,2,..,][2logn].

Alors n est un point d’étranglement pour la fonction n+—>n — o (n).
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R Démonstration. Soit m < n.

. Ou bien on a m <n — jet d’aprés ii), m —w(m) <n —j<n-— w (1),
oubienonan =m + ravec 1 <r <j— 1 etiii) et ii) donnent

m—om<<m—j<m—-omn) <n—ow@).

Soit maintenant m > n.
Ou bien on a m > n + 2 log n et en remarquant que pour tout entier ,

logm 3 .
< —log m, on obtient, pour n assez grand:
log 2 2

;ﬁ
by
|

i
‘g!

Fon a w(m) <

o

3 3
m—w(m)>m — > logm >n+ 2logn — 3 log (n+2logn)
>n>n—w),

: : 3
1 par la croissance de la fonction x — x — -2—log b

{
b

Ou bien on a m <n + [2 log n] et iv) donne alors

w(m) <<k<<w(n)
" ce qui entraine

m—w(m) >n—ow(n).

i b S e btk

:i Démonstration du théoréme 4. La méthode suivante est celle de [Erd 2].

. Pour assurer les hypothéses i) et iii) de la proposition 5, on va demander a
. n d’étre solution du systéme de congruences

n=0 mod B,
n=1 mod B,

| n=j—1 modB;_,

ou B, est un produit de k nombres premiers et By, ..., B;_; des produits
# de j nombres premiers. On pose

j—1
A =, H Bi .
i=0
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D’apres le théoréeme chinois, les solutions de ce systéme de congruences
sont de la forme

n=ny+yA avec O0<ny<A e yeN.
On se donne x assez grand. On choisit
k = [3loglog x], j = [6loglog x].

On prend les facteurs premiers de By, ..., B;_, distincts et compris entre
3log x et 4 log x, ce qui est possible d’aprés le théoréme des nombres
premiers. On a donc:

log A < 6(loglog x)*log (4log x) = O (loglog x)*.

Maintenant, pour 1 <s <2 log x, grice au choix des facteurs premiers
de A on a, pour la solution n, des congruences

(nO+Sa A) =1
et (ny, 4) = By .

Considérons le tableau (a; ,), 0 <s <2logx,0 <y < — — 1 défini par

SRS

as, = w(ng+s+yA) si s #0,

(”o‘l"yA) )
= | — S1 S
B,

D’aprés la proposition 4, la 5™ ligne de ce tableau contient au plus

0 X 1
A (lOg X)3 log 2—1

X
termes supérieures a 3 log log x. D’aprés le lemme 2, 11 y a ¥ (1+o (D) .

I
o

colonnes y pour lesquelles

w(ng+s+yA) <3loglogx pour s =1,...,2[logx],
w(nyg+yA) < 6loglog x pour s = 0.

Pour une de ces valeurs de y, n = n, + y A vérifie les 4 hypothéses de la
proposition 5 et est donc un point d’étranglement de la fonction
n>n— w(n).
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On peut raisonnablement conjecturer que pour & assez petit, la fonction
n+>n — d(n)® a une infinité de points d’étranglement, mais il semble peu
- vraisemblable que ce soit encore vrai pour ¢ = 1. D’aprés le théoréme
des nombres premiers, on peut voir que pour n = 2-3:..p,
n — (o (n) log n)*™ est négatif, et donc cette fonction n’a qu’un nombre
fini de points d’étranglement. On ne peut pas démontrer que n — ® (n)°™
n’a pas de points d’étranglement: La raison en est qu’il n’y a pas de résultats
non triviaux pour la question suivante: Quel est le plus petit 7, tel que
wm+tt) >k. On a évidemment 7, <<2-3-...p, et malheureusement,
nous ne pouvons améliorer ce résultat. C’est une question beaucoup plus
importante que 1’étude de n — w (n)°™.

Il n’est pas difficile de montrer que si z est un point d’étranglement pour
la fonction n — w (M)°™, alors w (n) < (log n)'/?*% 11 semble vraisem-
blable que pour n > n,, il existe m > n avec m — o (M)*™ < n et méme,
m— o m)P™ < n— ™M 7% e qui montrerait que le nombre de
points d’étranglement est fini. Peut-&tre, pour tout n > n,, existe-t-il un
m>n tel que m — d(m) <n — 2. On a besoin de n — 2, parce que

min  m — d(m) <n — 2, mais on ne sait rien a ce sujet.
m=n-+1,n+ 2

Enfin, il est facile de voir que toute fonction additive qui posséde une
infinité de points d’étranglement est croissante, et donc (cf. [Erd 3] et
[Pis]) proportionnelle au logarithme: La démonstration suivante a été
proposée par D. Bernardi et W. Narkiewicz.

Soit f additive ayant une suite infinie n; < n, < ... n, < ... de points
d’étranglement et a < b. On peut trouver, pour », assez grand, dans ’inter-

n, My

valle ( > —) un nombre ¢, premier a ¢ b; on aura alors
a

ca<mn<ch,
ce qui entraine
() +fla) <f(n) <f(c) +f(b)
et f(a) < f ().
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