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avec a >2 qui est un cas particulier de I’équation de Catalan, n’admet

qu’un nombre fini de solutions (cf. [Tij]).
L’existence d’une infinité d’entiers n tels que w (n) + 0 (n+1) = 2 est

~donc équivalente a Pexistence d’une infinité de nombres premiers de

Mersenne ou de Fermat.

§4. NOMBRES -INTERESSANTS

Définition. On dit que 7 est w-intéressant, si ’on a

w (m) w (n)
m>n-= — < .
m n

Interprétation géométrique: pour m > n, le point (m, w (m)) est situé sous
la droite joignant I'origine a (n, w (n)).

Propriété 1: Pour k > 1, lenombre A, = 2-3 - ... p, est w-intéressant.
En effet: si w (m) <k on a bien: w (m)/m < w (4,)/A, pour m > A,. Et
siw(m) =k + 4,4 > 0, on a alors m > A4, 3% et:

1+ —
w (m) k+4 w (4,) ( k) o(A4,) 1+4 w (A;)
< 5 = 3 < y <
m A3 Ay 3 A, 3 A,

Propriété 2. Soit n vérifiant :

1
alors n est w-intéressant.

Démonstration : Soit m > n, ou bien on a: m > A4, et d’aprés la pro-
priété 1:

1
k+D(1—-—
o(m) _ o) <( - )< k>< o ()

==
m Ay n n

ou bien on a: n < m < A, et cela entraine w (m)/m < kin = w (n)/n.

Propriété 3 : Pour une infinité de valeurs de k, il existe un nombre w-inté-
ressant, plus grand que A, et ayant k — 1 facteurs premiers.

L’Enseignement mathém., t. XXVII, fasc. 1-2. &
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Démonstration : Soit k tel que

Pr+1 1
3 S14

alorsn = 2-3 ... p._1(p.+1) est w-intéressant:

DPr+1

Remarquons d’abord que l'on a 4, <n<n' = 4, et que pour

Px
k > 2, d’aprés la propriété 2, n’ est w-intéressant. Ensuite, w (n) = k — 1;
simvériien<m<n ona: w(m) <k — 1, si m vérifie ' <m, on a

w (m) - w(n) _ i - k-1

’ ’ ?

m n n n
d’aprés ’hypothese.

On sait qu’il existe une infinit¢ de nombres premiers tels que
Pr+1 — Pr > 2 log p, (cf. [Pra], p. 157). Pour ces nombres on aura

2 1o -1
DPr+1 1+ g Pk
pr+1 prt+1

et comme p, ~ k log k, cela entraine la relation (3).

Remarque 1. Si k vérifie p,,; — pp < P

il est facile de voir qu’il

Dr+1

4%
Cette situation se produit pour une infinité de k. On peut donc conjecturer
que pour une infinit¢ de k, les nombres w-intéressants compris entre A,
et A, vérifient w (n) > k.

n’existe aucun nombre w-intéressant compris entre A, et n' = A4,

Remarque 2. Désignons par n” le plus petit entier suivant A4, et ayant

1
(k—1) facteurs premiers. Onan” <n= Ak<1 + —> . Il est possible d’obte-

Dk
nir une meilleure majoration de n” de la fagon suivante: Le théoréme de

Sylvester-Schur affirme que P (u,r), le plus grand facteur premier du

produit (u+1) ... (u+r) est plus grand que r si u > r. (cf. [Lan]).
P2
Considérons le produit: ] (Pe—1 prt1t). 11 doit avoir un facteur
t=1

premier g > p,_,, et soit t = ¢, tel que g divise p,_,; p, + . Alors le
nombre n = 2-3-...p_, (Pr—1 P T1t) a k — 1 facteurs premiers et I'on
an<<A,(1+p,_,/p.pr—1)- Le résultat de Ramachandra (cf. [Ramac]):
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. 1 A
si P32 <u<r" ona:P(ur)>r't?* avec A
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| 1
permet de montrer qu’il existe a > 0 tel que n" < 4, <1 + o +a> . On
k

@ peut prendre o = 0, 000974,

Propriété 4. Soit n un nombre w-intéressant, n >(k—1) A, alors
w (n) >k. Cela entraine qu’un nombre c-intéressant compris entre Ay
et Ay, aplusde (k—1) facteurs premiers.

Démonstration. Soit n > (k—1) 4, vérifiant o (n) <k — 1; on écrit
A, (t—1) <n < A, t, fentier.

On a donc ¢ > k. Ce nombre n ne peut pas €tre w-intéressant puisque

o (1) k—1 k o (A,
< — < —— < :
n Ak (t - 1) Akt Akt

e
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Conjecture: Peut-on remplacer n > (k—1) A, par n > (1+¢ (k)) 4, avec
lim &(k) =

k= + o

Finalement, on voit que I’ensemble des nombres w-intéressants coincide
presque avec l’ensemble des nombres w-largement composés: Les deux
ensembles ont une infinité de points communs, mais il existe une infinité
de nombres w-largement composés non w-intéressants (exemple:
n = (pr+1—1) Ay par la propriété 2) et la propriété 3 fournit un exemple
de la situation inverse.

§ 5. DEMONSTRATION DU THEOREME 4
§ PRrROPOSITION 3. Posons N, (x) = card {n <x [ w () > k}. Pour «
fixé, a > 1, onalorsque x — + oo (avec les notations de [’introduction)
1 F (o) L&+ (aloglogx) x(1+0(1/loglog x))
NE (log x)l‘”“l"g“\/loglogx

ot {y} désigne la partie fractionnaire de 3.

N[a log log x] (X) =

F (2)

Pour 0 < o < 1, la formule ci-dessus est valable (en remplagant
F (o)

—

| par ) pour estimer card {n <x | (n) <o loglog x}.
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