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NOMBRE DE FACTEURS PREMIERS 17

avec a > 2 qui est un cas particulier de l'équation de Catalan, n'admet

qu'un nombre fini de solutions (cf. [Tij]).
L'existence d'une infinité d'entiers n tels que co (ri) + co (n+ 1) 2 est

donc équivalente à l'existence d'une infinité de nombres premiers de

Mersenne ou de Fermât.

§4. Nombres co-intéressants

Définition. On dit que n est co-intéressant, si l'on a

co (m) co (n)
m > n => <

m n

Interprétation géométrique : pour m > n, le point (m, co (m)) est situé sous
la droite joignant l'origine à (n, co (n)).

Propriété 1 : Pour k > 1, le nombre Ak — 2 - 3 • pk est co-intéressant.
En effet: si co (m) < k on a bien: co (m)/m < co (Ak)/Ak pour m > Ak. Et
si co (m) k + A, A > 0, on a alors m > Ak 3À et:

co (m) k+A
_

CO(Ak)
(1 + fc)

(Ak) 1 + A m (Ak)

m Ak3AAk 3a < Ak'
Propriété 2 : Soit n vérifiant :

Ak < n < Ak+1^1 - Aet co(n)

alors n est co-intéressant.

Démonstration: Soit m > n, ou bien on a: m >Ak+1 et d'après la
propriété 1 :

co{m)
^ co(^+1)

^ kj co (n)
m Ak+i n

ou bien on a: n < m<Ak+1et cela entraine m m)/m < k/n co (ri)/n.
Propriété 3 : Pour une infinité de valeurs de k, il existe un nombre
co-intéressant, plus grand que Ak et ayant k 1 facteurs premiers.
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Démonstration : Soit k tel que

<3) ^ > 1 + r-, •

Pk + t k — 1

alors n 2 • 3 • ...pk_x (pk +1) est co-intéressant:

Remarquons d'abord que l'on a Ak<n <ri Ak et que pour
Pk

k > 2, d'après la propriété 2, n' est co-intéressant. Ensuite, co (ri) k — 1 ;

si m vérifie n < m < ri on a : co (m) < k — 1 ; si m vérifie ri < m, on a

co (m) co(ft') k k — 1

m ft' n' ft

d'après l'hypothèse.
On sait qu'il existe une infinité de nombres premiers tels que

Pk+i ~ Pk > 2 l°g Pk (cf. [PraL P- 157). Pour ces nombres on aura

Pk+i >l2 log - 1

Pk+ 1 + 1

et comme pk ~ k log k, cela entraine la relation (3).

Pk
Remarque 1. Si k vérifie pk+x ~ pk < il est facile de voir qu'il

k — 1

n'existe aucun nombre co-intéressant compris entre Ak et ri Ak
Pk

Cette situation se produit pour une infinité de k. On peut donc conjecturer

que pour une infinité de k, les nombres co-intéressants compris entre Ak

et Ak+1 vérifient co (ft) > k.

Remarque 2. Désignons par n" le plus petit entier suivant Ak et ayant

(k— 1) facteurs premiers. On a n" < n Ak(1-1 j Il est possible d'obte-
V Pk)

nir une meilleure majoration de ft" de la façon suivante: Le théorème de

Sylvester-Schur affirme que P (:u, r), le plus grand facteur premier du

produit (u+ 1) (u + r) est plus grand que r si u > r. (cf. [Lan]).
Pk-2

Considérons le produit: J"] (Pk-i Pk + t)- H doit avoir un facteur
t=i

premier q > pk-i> et s°it t tq tel que q divise pk-iPk + t. Alors le

nombre n 2 • 3 • ...pk-2 (Pk-iPk^iq) a k - 1 facteurs premiers et l'on
a ft <^Ak(l+pk-2/PkPk-i)' Le résultat de Ramachandra (cf. [Ramac]):
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x log U \
si r3/2 < u < rlog log r, on a: P (u, r) > r + avec X - 8 + ^ \

permet de montrer qu'il existe a > 0 tel que < A- ('+ w) 0n
peut prendre a 0, 000974.

Propriété 4. Soit n un nombre co-intéressant, «>(/:— 1) ^ alors

(o (n) > k. Cela entraine qu 'un nombre œ-intéressant compris entre Ak

et Ak+1 a plus de {Je— 1) facteurs premiers.

Démonstration. Soit /z >(£-1)^ vérifiant m (/z) < k - 1 ; on écrit

^n < Ak t, t entier.

On a donc t > k. Ce nombre n ne peut pas être co-intéressant puisque

co (n) k — 1 /c co (Akt)

n Ak (t — 1)

Conjecture: Peut-on remplacer n fi*(k-l) Ak par n > (1 +e{k)>)Ak avec
lim 8 (fc) 0?

fc-> + oo

Finalement, on voit que l'ensemble des nombres co-intéressants coïncide

presque avec l'ensemble des nombres co-largement composés: Les deux
ensembles ont une infinité de points communs, mais il existe une infinité
de nombres co-largement composés non co-intéressants (exemple :

n (.Pk+1 ~ 1) Ak par la propriété 2) et la propriété 3 fournit un exemple
de la situation inverse.

§ 5. Démonstration du théorème 4

Proposition 3. Posons Nk (x) card {n < x | co (n) > k). Pour a
fixé, a > 1, on a lorsque x -> + oo (avec les notations de l'introduction)

M- 1 F(a)ri+cictog-ïx{l+0(1/log log x))
iV [a log log x] W — r „ -i

a " ~
V 2n a1 (logx)1 ^^/loglogx

ou {>'} désigne la partie fractionnaire de y.
F (a)Pour 0 < a < 1, laformule ci-dessus est valable I en remplaçant

F(a)\ V a_1
par - jpour estimer card {n<x | œ(n<a log log x}.
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