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12 P. ERDÖS ET J.-L. NICOLAS

On obtient alors

x (l2 +B)k(Z/log 2)k
u*><- [1+0(i

et en remplaçant log k\ par k log k + O (k), on obtient

/,W<x'-exp (3c(l+.

ce qui achève la démonstration du théorème 2.

§ 3. Valeurs extrêmes de f(ri)+f (n +1)

1) Fonction o (ri) somme des diviseurs de n.

On remarque d'abord que, lorsque n -* + oo

(2) ff(n)=n fi {1 + - + + 2
f°||« \ P P

n(i+o(i)) n
p»ii» V p p

P ^ log n

autrement dit, les facteurs premiers supérieurs à log n ne modifient guère

g (ri). De tels facteurs, il y en a au plus log n / log log n et:
log«

y-1- / 1 1\ y-y
1 / 1 X l0gl0S"

n 1 H h...H—7 < n - T~T < 1 — —
P«||n \ P P / p*\\n 1-1 IP \ log n

p > log n p > log n

-i+ 0(1)
log log n

ce qui démontre (2).
3

Ensuite, on a pour tout n, a (ri) > n et pour n pair, g (n) > - /z. On a

5
donc pour tout n: g (ri) + g («+1) > - n. Inversement, pour k fixé, le

nombre n 4p2Pz pk + 1 est tel que n et n + 1 n'ont pas (à part 2)

de facteurs premiers inférieurs à (1 — a) log n et donc vérifie : g (n) + g (n +1)

^ n(l+ o(l)).
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On obtient les grandes valeurs de g (ri) + g (n+ 1) de la façon suivante:
S II résulte de (2) que

g (n) + g (n + 1) < n (1 + o (1)) (P± +P2)
| avec

n i i /r>
et n il/ •

p\n 1 I IP P\n+ 1 ^ lP
p ^ log n p ^ log n

Comme Pi et P2 sont supérieurs à 1, P1 + P2 <PX P2 + 1 et

pi.p2 < n r~7/—log log n 9

p log n I ~~1IP

où y est la constante d'Euler d'après la formule de Mertens (cf. [Wri]
§ 22.8). Cela donne pour tout n

g(ti) + g (n + 1) < n (1 + o (1)) ey log log n

Ce résultat est le meilleur possible puisque pour une infinité de n, on a

(cf. [Wri] §22.9):
g (n) ~ n ey log log n

Pour que la majoration P± + P2 < P± P2 + 1 soit bonne, il faut choisir
P1 ou P2 voisin de 1. L'examen des tables de max g (n) et de

n^rX

max (er (n) + g {n — 1))
n^x

montre que souvent un nombre N hautement abondant (c'est-à-dire vérifiant

n < N => g (n) < g (N)) vérifie: max (g (n) + G (n- 1)) g (N)
n^N+l

+ (7 (N- 1) OU (7 (N + l) + G (N).

2) Indicateur d'Euler <fi

On a une relation analogue à (2) :

</>(«) « n fi--) n(i+o(D) ri MV
p\n \ P/ p\n \ P/

P ^ log n

On démontre comme précédemment que pour tout n > 1, on a

3
(j) (n) + 4> (n + 1) < - n



14 P. ERDÖS ET J.-L. NICOLAS

et que, pour une infinité de n

3
4> (ri) + (j) (n + 1) ~ - n

Pour les petites valeurs de $ (n) + $ (n+1), on a

<fi (n) + <i>(n+1) > n(1+ o(1))(Pi +P2) > 2« (l + o (1))

avec

p,- n « p2- n (i-i
P|/| \ P/ P|«+l V P

P ^ log n p ^ log n

et comme

on a

PiP2> n (i-i
P log n log log n

2e~y/2 n(l+o (1))
4>{n) + (j)(n + 1) >

yiogiogi

Cette inégalité est une égalité pour les n construits de la façon suivante :

Soit k e N*. On pose Pk fi (1 — 1/p). Soit k' le plus grand entier tel
p^pk

que Pk, > %/Pk ; on pose alors P1P2 — P/t'i ^ p^+i ...p^ on a

~= (l + o (1)) et l'on prend pour n la plus petite solution des

congruences: n 0 mod P; n + 1 0 mod S. Cette solution vérifie
R < rc < jRS exp (0 (Pfc)), ce qui montre que n tend vers l'infini avec k,

à (n) d>(R) à(n + l) d> (S)
et < et <

n R n-h 1 S

3) Fonction Q : Démonstration du théorème 3.

Proposition 1. Soit & > 0 et k > 0. On écrit n(n+ 1) Uk Vk où

Uk est le produit des facteurs premiers < k. Alors il existe n0 (k, s) tel que

pour n^n0, on ait Uk<^n1 + £.
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Le théorème 3 résulte de cette proposition puisque pour k > 2 :

Q(n) + Q(n + 1) ß(n(n + l)) &(Uk) + Q(Vk)

^ log Uk
+

log Vk

log 2 log k

log n 2 log n
< (1 +£) ~ r7 >

log 2 log /c
pour n > n0

Etant donné 77, il suffit donc de choisir £ assez petit et k assez grand pour

obtenir: Q (n) + Q (n + 1) <
log n

log 2
(1 + 77) pour n >n0.

La proposition 1 résulte de la proposition 2 (cf. [Rid] et [Sch], th 4F)?

comme nous l'a précisé M. Langevin:

Proposition 2 (Ridout). Soit 9 un nombre algébrique ^ 0. Soit

PlfP2, ...,PS, Qu Qi> •••> Qt des nombres premiers distincts, et ô > 0. Il
y a un nombre fini de nombres rationnels a/b avec :

a a'P\l Pafi ...Pass et b b'Q[l Qß22 ßf<

avec : oc1} a2 ocs, ßu ß2, ßt e N et a',b'e N* tels que

1

<
a'fe' ufr

: Démonstration de la proposition 1. Supposons que pour une infinité de n,
; on ait Uk > n1 + e. On peut partager les nombres premiers < k en deux

parties Px, P2, Ps et Ql9 Q2, ßt, de telle sorte qu'il y ait une infinité
de n tels que Uk > n

1 + 6 et tels que

p<ket p\n => pe{P

p<k et pI n + l=>2>e{ßl5

On écrit n n'PI1...Pxss et (n+l) n" gi1 ••• Qt' et l'on choisit 0 1,

\ô a/3. Il y aurait alors une infinité de nombres rationnels
n + l

solution

de

n + l
<

n'n" | (n (n + l))5

p puisque n' n!' — Vk <n1 8+ n £, ce qui contredirait la proposition 2.
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Les valeurs de n < 300 000 vérifiant

m < n => Q (m (m + 1)) < Q (n (n + 1))

sont (avec, entre parenthèses la valeur de Q (n (n+1))): 2 (2); 3 (3); 7 (4);
8(5); 15(6); 32(7); 63(9); 224(10); 255 (11); 512(13); 3968 (14);
4095 (17); 14436(18); 32768 (19); 65535 (20); 180224(22); 262143 (24).

On constate que les nombres 2n + {-1,0, +1}, lorsque n a de nombreux
facteurs premiers, figurent en bonne place dans cette table. Malheureusement,

la proposition 2 n'est pas effective, et il n'est pas possible de montrer
par cette méthode que la table en contient une infinité.

4) Fonction co.

Nous avons rappelé dans l'introduction que pour tout n, on a

los n
œ(n) < ,—: (1 +o(l))

log log n

— œ(n) + co (n+1)
Soit / lim —

log n I log log n

On al < / < 2 de façon évidente. On a probablement / 1, mais il semble

impossible de le démontrer.
La suite des nombres n tels que m < n => co [m (m F 1)) < co (n (n+ 1))

est: 1, 2, 5, 14, 65, 209, 714, 7314, 28570, 254540, etc On a en particulier
714 2 • 3 • 7 • 17 et 715 5 • 11 • 13. L'équation

n (n + 1) 2 • 3 • 5 • pk

a-t-elle des solutions >714? (cf. [Nel]).
Pour les petites valeurs de co (n) + co (n + 1), le résultat de Chen (pour

une infinité de nombres premiers p, on a Q (2p +1) < 2, cf. [Hal 1], chap 11)

montre que pour une infinité de n, on a

co(n) + co (n + 1) < Q (n) + Q (n + 1) < 4

L'ultime amélioration du résultat de Chen (0 (2/?+l) 1) permettrait
de remplacer 4 par 3 qui est le meilleur résultat possible pour Q.

Si l'on a co (n) + co (n+ 1) 2, n et n + 1 doivent être des puissances
de nombres premiers. L'un des deux étant pair, doit donc être une puissance
de 2. Cette situation se produira en particulier si n est un nombre premier
de Mersenne {n 2P - 1 avec p premier) ou si n + 1 est un nombre

premier de Fermât (n+ 1 =22fc+ 1). D'autre part l'équation 2n + 1 pa
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avec a > 2 qui est un cas particulier de l'équation de Catalan, n'admet

qu'un nombre fini de solutions (cf. [Tij]).
L'existence d'une infinité d'entiers n tels que co (ri) + co (n+ 1) 2 est

donc équivalente à l'existence d'une infinité de nombres premiers de

Mersenne ou de Fermât.

§4. Nombres co-intéressants

Définition. On dit que n est co-intéressant, si l'on a

co (m) co (n)
m > n => <

m n

Interprétation géométrique : pour m > n, le point (m, co (m)) est situé sous
la droite joignant l'origine à (n, co (n)).

Propriété 1 : Pour k > 1, le nombre Ak — 2 - 3 • pk est co-intéressant.
En effet: si co (m) < k on a bien: co (m)/m < co (Ak)/Ak pour m > Ak. Et
si co (m) k + A, A > 0, on a alors m > Ak 3À et:

co (m) k+A
_

CO(Ak)
(1 + fc)

(Ak) 1 + A m (Ak)

m Ak3AAk 3a < Ak'
Propriété 2 : Soit n vérifiant :

Ak < n < Ak+1^1 - Aet co(n)

alors n est co-intéressant.

Démonstration: Soit m > n, ou bien on a: m >Ak+1 et d'après la
propriété 1 :

co{m)
^ co(^+1)

^ kj co (n)
m Ak+i n

ou bien on a: n < m<Ak+1et cela entraine m m)/m < k/n co (ri)/n.
Propriété 3 : Pour une infinité de valeurs de k, il existe un nombre
co-intéressant, plus grand que Ak et ayant k 1 facteurs premiers.
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