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12 P. ERDOS ET J.-L. NICOLAS

On obtient alors

x (I, + B (I/log 2)* 5
£ < o (1 +0 (7»

et en remplagant log k! par k log k£ + O (k), on obtient

log x log log 1
fe(x) < x77¢exp (30(1—1—0(1)) ER o888 x)

loglog x

ce qui acheve la démonstration du théoréme 2.

§ 3. VALEURS EXTREMES DE f(n) + f(n+1)

1) Fonction o (n) = somme des diviseurs de n.

On remarque d’abord que, lorsque n - + o0,

1 1
2) o) =n I <1+_+...+_a>
p||n p p
1 1
—n(l4o®) T[] (1+._+...+_;)
pa]}]n p b
p=logn

autrement dit, les facteurs premiers supérieurs a log » ne modifient guére
d (n). De tels facteurs, il y en a au plus log n / log log » et:

_ logn
1 1 1 1 loglog n
I <1+—+...+——)< I <<1—- )
pal|n P p° = pafjn 1—1/p = log n
p>logn p>logn
{ O (1)
B loglogn

ce qui démontre (2).

Ensuite, on a pour tout n, o (n) > n et pour » pair, ¢ (n) > —n. On a

5
donc pour tout n: o(n) + o (n+1) > 5 n. Inversement, pour k fixé, le

nombre n = 4p, p3...p, T 1 est tel que n et » + 1 n’ont pas (& part 2)
de facteurs premiers inférieurs a (1 —¢) log n et donc vérifie: o (n) + o (n+1)

= ; n(1+o (1))
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On obtient les grandes valeurs de o (n) + o (n+1) de la fagon suivante:
Il résulte de (2) que

c(n) +o(n+1) <n(l+0(1) (Py+Py)
:avec
1 1
P — Ct Pz == H .
1 rxl I-14r pint1 1=1/p
p=logn p=logn

Comme P, et P, sont supérieurs a 1, Py + P, <P P, + let

1

~ ¢’ loglogn,
p=logn 1 _l/p

ol y est la constante d’Euler d’aprés la formule de Mertens (cf. [Wri]
- §22.8). Cela donne pour tout »

om) +o(n+1) <n(l+o(l)e’loglogn.

Ce résultat est le meilleur possible puisque pour une infinité de n, on a
(cf. [Wri] § 22.9):

oc(n) ~neloglogn.

| Pour que la majoration P, + P, << P; P, + 1 soit bonne, il faut choisir
Py ou P, voisin de 1. L’examen des tables de max o (n) et de

n=x

max (o (n)+o (n—1))

n=x

- montre que souvent un nombre N hautement abondant (c’est-a-dire véri-
flant n < N =0 () <a(N)) vérifie: max (¢ (m)+o®—1))= o (N)

; n<=N+1
"+ o (N—1)ouo (N+1)+a (N).
2) Indicateur d’Euler ¢ .

On a une relation analogue a (2):

d(n) =n [] (1—1—1)>=n(1+0(1)) I (1—-1-).

pin p|n P
p=1logn

On démontre comme précédemment que pour toutn > 1, on a

¢<n>+¢(n+1)<§n
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et que, pour une infinité de »

d(m)+od(m+1) ~—§-n.

Pour les petites valeurs de ¢p (n) + ¢ (n+1), on a

(M) +¢m+1)>n(1+01)(Py+Py) > 2n(1+0(1) /PP,

avee

p|n p p|n+1 p
p=logn p=logn
et comme
e—)’
PP, = 1-1/p) ~ ———,
2= p_lllogn loglogn
on a

2¢7"?n (1 +0 (1))
Jloglog n .

¢(n) +¢(n+1)>

Cette inégalité est une égalité pour les n construits de la fagon suivante:
Soit k € N*. On pose P, = [] (1—1/p). Soit k' le plus grand entier tel

p=1p,
que P, > \,/E; on pose alors R = pyp, ...pps S = Prryq1 .- Py ON A
$(R) _ ¢(5)
R S
congruences: n = Omod R; n+ 1 = Omod S. Cette solution vérifie
R <n< RS=exp(0( py), ce qui montre que n tend vers I'infini avec k,

(1+o (1)) et on prend pour » la plus petite solution des

o 2 <</>(R)et</>(i'l+1) Aty

n R n+1\S

3) Fonction Q: Démonstration du théoréme 3.

ProrosITION 1. Soit ¢ >0 et k>0. Onécrit n(nt+1) = UV, ou
U, est le produit des facteurs premiers < k. Alors il existe n, (k, €) tel que
pour n >n,, onait U, <n'*te
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Le théoréme 3 résulte de cette proposition puisque pour k > 2:
Q)+ Q(n+1) = Qnm+1) = QUY + 2V
log U, N log V,

log 2 log k
logn 2logn

< (1+¢) , pour mn>ng.

log 2 * log k

Etant donné 7, il suffit donc de choisir ¢ assez petit et k assez grand pour

: logn
obtenir: Q(n) + Q(n+1) < 1—g~—?: (1+#n) pour n > n,.
; og

La proposition 1 résulte de la proposition 2 (cf. [Rid] et [Sch], th 4F),
‘comme nous I’a précisé M. Langevin:

ProprosiTION 2 (Ridout). Soit 0 un nombre algébrigue # 0. Soit
P, P, ...,P, Q4 Q,,.., O, des nombres premiers distincts, et 6 > 0. Il
'y a un nombre fini de nombres rationnels alb avec:

a =a' P%P%2. P e b=>bQlQl. . Qk
avec: Oy, 0y ... g By, Bay s B €N et a', b e N* tels que

1
= |a’b’[ Iabla'

a
b

’9_

Démonstration de la proposition 1. Supposons que pour une infinité de n,
onait U, > n'"% On peut partager les nombres premiers <k en deux

‘parties P,, P,,...P et O, O,, ... O,, de telle sorte qu’il y ait une infinité
de n tels que U, > n 7% et tels que

p<k et pln=pe{P;,..,P},

p<<k et p|n+1=>pe{Q1,...,Qt}.
Onécritn = n' PA...P% et (n+1) = n" Q%' ... QF et 'on choisit 6 = 1,
5= ¢/3. Il y aurait alors une infinité de nombres rationnels .

;de

, solution

n

n+1
ll on
n

1
| n'n” I (n(n+1)y

I _ 1— _ : . .
Lpuisque n'n" =V, <n ~°+ n”% ce qui contredirait la proposition 2.
e

<
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Les valeurs de n < 300 000 vérifiant
m<n=Q(m@m+1)) < Q(n{ntl)

sont (avec, entre parenthéses la valeur de Q (n (n+1))): 2(2); 3(3); 7 (4);
8(5); 15(6); 32(7); 63(9); 224 (10); 255(11); 512(13); 3968 (14);
4095 (17); 14436 (18); 32768 (19); 65535 (20); 180224 (22); 262143 (24).

On constate que les nombres 2" + {—1, 0, + 1}, lorsque » a de nombreux
facteurs premiers, figurent en bonne place dans cette table, Malheureuse-
ment, la proposition 2 n’est pas effective, et il n’est pas possible de montrer
par cette méthode que la table en contient une infinité.

4) Fonction .

Nous avons rappelé dans 'introduction que pour tout », on a

logn

w(n) <
loglogn

(140(1)) .

— o®m +orn+1
Soit / = lim ) ( )

logn /loglogn °
On a1 <! <2 de fagon évidente. On a probablement / = 1, mais il semble
impossible de le démontrer.

La suite des nombres n tels que m < n = o (m (m+ ) <o (n(n+ 1))
est: 1, 2, 5, 14, 65, 209, 714, 7314, 28570, 254540, etc ... On a en particulier
714 = 2-3-7-17et 715 = 5-11 - 13. L’équation

nn+1) =2-3-5...p

a-t-elle des solutions > 7147 (cf. [Nel]).

Pour les petites valeurs de w (n) + w (n+1), le résultat de Chen (pour
une infinité de nombres premiers p, on a Q (2p+ 1) < 2, cf. [Hal 1], chap 11)
montre que pour une infinité de n, on a

om) +om+1) <M +Q2n+1) 4.

L’ultime amélioration du résultat de Chen (Q 2p+1) = 1) permettrait
de remplacer 4 par 3 qui est le meilleur résultat possible pour Q.

Sil'onaw(@) + w@®m+1) = 2,netn+ 1 doivent étre des puissances
de nombres premiers. L’un des deux étant pair, doit donc étre une puissance
de 2. Cette situation se produira en particulier si # est un nombre premier
de Mersenne (n = 22 — 1 avec p premier) ou si » + 1 est un nombre
premier de Fermat (n+1=22k+1). D’autre part 1’équation 2" + 1 = p°
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avec a >2 qui est un cas particulier de I’équation de Catalan, n’admet

qu’un nombre fini de solutions (cf. [Tij]).
L’existence d’une infinité d’entiers n tels que w (n) + 0 (n+1) = 2 est

~donc équivalente a Pexistence d’une infinité de nombres premiers de

Mersenne ou de Fermat.

§4. NOMBRES -INTERESSANTS

Définition. On dit que 7 est w-intéressant, si ’on a

w (m) w (n)
m>n-= — < .
m n

Interprétation géométrique: pour m > n, le point (m, w (m)) est situé sous
la droite joignant I'origine a (n, w (n)).

Propriété 1: Pour k > 1, lenombre A, = 2-3 - ... p, est w-intéressant.
En effet: si w (m) <k on a bien: w (m)/m < w (4,)/A, pour m > A,. Et
siw(m) =k + 4,4 > 0, on a alors m > A4, 3% et:

1+ —
w (m) k+4 w (4,) ( k) o(A4,) 1+4 w (A;)
< 5 = 3 < y <
m A3 Ay 3 A, 3 A,

Propriété 2. Soit n vérifiant :

1
alors n est w-intéressant.

Démonstration : Soit m > n, ou bien on a: m > A4, et d’aprés la pro-
priété 1:

1
k+D(1—-—
o(m) _ o) <( - )< k>< o ()

==
m Ay n n

ou bien on a: n < m < A, et cela entraine w (m)/m < kin = w (n)/n.

Propriété 3 : Pour une infinité de valeurs de k, il existe un nombre w-inté-
ressant, plus grand que A, et ayant k — 1 facteurs premiers.

L’Enseignement mathém., t. XXVII, fasc. 1-2. &
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