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342 P. HILTON AND J. PEDERSEN

of P5 of dimension ') (n—1) — k. Moreover, the incidence relations are carried
over by this duality; thus if, in P,, every (i— 1)-face is incident with 2) s, i-faces,
then, in P, every (n—i)-face is incident with s; (n—i— 1)-faces (and there is a
symmetrical statement interchanging P, and P;). In this sense P, is selfdual.
Figure 8 displays these dualities for n = 4, as well as the value of A.

3. HISTORICAL COMMENT AND SUMMARY

René Descartes (1596-1650) and Leonhard Euler (1707-1783) worked on
these subjects independently—yet, as we have seen, Polya (1887— ) has shown
that their seemingly different formulae for convex polyhedra homeomorphic to
S? are entirely equivalent to each other. One might believe from the evidence that
Euler may have known about Descartes’ work on this subject. That would be an
erroneous assumption since Descartes’ work on this matter [ 5] was not printed
until a century after Euler’s death (see [1], p. 56).

Euler [6] offered a variety of verifications but no formal proof of his formula.
We have observed that each of the formulae is somewhat surprising by itself and
that their connection rather defies intuition since at first glance they seem to be
dealing with different qualitative aspects of polyhedra. As a matter of fact neither
Euler’s nor Descartes’ formula is easy to prove independently ; yet, as we have
seen, it is not at all difficult to follow Polya’s proof that the two formulae are
equivalent. -

. The formulae diverge in higher dimensions so that their relationship is a
special phenomenon of dimension 2. Euler’s formula was generalized by Ludwig
Schlafli [9], a Swiss mathematician of the 19th century (1814-1895), who
described, in effect, the Euler-Poincaré characteristic of an n-dimensional sphere
S" subdivided as a polytope, a combinatorial structure attributed by Coxeter to
Reinhold Hoppe [11]. Poincaré (1854-1912) gave a definition of the Euler-
Poincaré characteristic for arbitrary polyhedra, and one proves now, by
invoking the topological invariance of the homology groups (see [12]) that the
Euler-Poincaré characteristic is a topological invariant.

') The precise form of this duality shows how “correct” it is to regard §"~ ! as (n—1)-
dimensional, rather than n-dimensional.

) In fact, s; = 2(n—i—1).
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On the other hand, there will be no straightforward generalization to higher
dimensions of Descartes’ formula for the total angular defect of a polyhedron
" homeomorphic to §?, since this defect ceases in higher dimensions to be a
' topological invariant. However it remains, under suitable restrictions on the
“cellular structure, a combinatorial invariant in a certain strict sense and thus
independent of the underlying geometry of the polyhedron.
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