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10 P. ERDOS ET J.-L. NICOLAS

ko - — —
& X < ¥ exp (0(/p0) < koexp (0(/p) < exp (c2/log X).

Remarque. On peut conjecturer que log Q; (X) ~ =« \/ _i. \/ log X. En

effet s1 'on calcule la constante ¢, dans la majoration ci-dessus, on trouve

2
c, =2m \/ 3 (1+¢), le «2» venant de la formule de Brun-Titchmarsh.

Si I'on suppose les nombres premiers trés bien répartis autour de p,, on

Pr+r, 108 Driq
ayr———

Dk Pk
le nombre de solutions de I’inéquation

peut assimiler log et le nombre d’éléments de E’, serait

o0 o 6] (e 0] e 0]
Y rx,+ Yy  ry,<p. avec )y @ x; = o
r=1 i=1 i=1

r=1

x;, ¥;€{0, 1}. Le logarithme de ce nombre de solutions est équivalent a
[
NEN
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clog x
Minoration : Posons k = | ——2° | + 1 et A, =P =2.3. p.
loglog x
oll 6 (x) = ) logp est la fonction de Chebichev. Les multiples n de 4,
p=x
. clog x X . e :
vérifient w(n) > —————. Il y en a | — | qui sont inférieurs & x. On a (cf.
loglog x A,

[Land], § 57):
log 4, = 0(p) = pi + O(pflog®p) = k(log k+loglogk—1+4o0 (1)) -

Il vient en posant / = log x, /, = log log x, I; = log log log x:

)
k=210
I,
log 4, = cl + c(logc—1) (140 (1) I/I,
et
X

t-e 11 L4 o(1)) 08%
> | 1] em (caona trom) f2E ).
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Majoration : En développant par la formule multinomiale (cf. [Com],
t. 1, p. 38 ou [Hal 2], p. 147), on obtient:

(Z -1—> > k! Y 1

p=xP 2£piy) < < P =% Py Py oee Py

RS i e T N I

k

- On a donc, pour k € N, en désignant par S ’ensemble des nombres sans
' facteur carrés,

1 1 1 1\ *
DT T
X n=x, neS n<=x, neS n k! p=x p

o(n) =k o (n) =k

] Evaluons maintenant le nombre d’entiers n < x dont les facteurs
- premiers sont exactement p;, pi,, ..., pi, . On doit avoir

I P a .
n = p;lp;? ...piz<x, a; > 1.

- Ce qui entraine

log x
oy + oy + .o oo < : o; > 1.
| log 2

Or le nombre de solutions de cette inéquation est un nombre de combi-
[log x / log 2] 1 /log x\*
< - .
k k!\log?2

naisons avec répétition et vaut <

On a donc

i 1 1\* /log x\*
X n=x (k) p=x D 10g2

et

( Y %)J (log x/log 2)

p=x

o (n) >k
| s a’ a*
On utilise la majoration ) —— < valable pour

; = G (kY 1—af(k+1)?
a < (k+1)*. On sait d’autre part (cf. [Land] § 28) qu’il existe B tel que

1
Y, — <loglog x + B, et on choisit:

p=Xx
clog x
e e Ly B
loglog x

P
M




12 P. ERDOS ET J.-L. NICOLAS

On obtient alors

x (I, + B (I/log 2)* 5
£ < o (1 +0 (7»

et en remplagant log k! par k log k£ + O (k), on obtient

log x log log 1
fe(x) < x77¢exp (30(1—1—0(1)) ER o888 x)

loglog x

ce qui acheve la démonstration du théoréme 2.

§ 3. VALEURS EXTREMES DE f(n) + f(n+1)

1) Fonction o (n) = somme des diviseurs de n.

On remarque d’abord que, lorsque n - + o0,

1 1
2) o) =n I <1+_+...+_a>
p||n p p
1 1
—n(l4o®) T[] (1+._+...+_;)
pa]}]n p b
p=logn

autrement dit, les facteurs premiers supérieurs a log » ne modifient guére
d (n). De tels facteurs, il y en a au plus log n / log log » et:

_ logn
1 1 1 1 loglog n
I <1+—+...+——)< I <<1—- )
pal|n P p° = pafjn 1—1/p = log n
p>logn p>logn
{ O (1)
B loglogn

ce qui démontre (2).

Ensuite, on a pour tout n, o (n) > n et pour » pair, ¢ (n) > —n. On a

5
donc pour tout n: o(n) + o (n+1) > 5 n. Inversement, pour k fixé, le

nombre n = 4p, p3...p, T 1 est tel que n et » + 1 n’ont pas (& part 2)
de facteurs premiers inférieurs a (1 —¢) log n et donc vérifie: o (n) + o (n+1)

= ; n(1+o (1))
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