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10 p. ERDÖS ET J.-L. NICOLAS

ko

Qi(x) < Z exp (O+pk))< k0expJpkj) < exp (c2 *Jlog X).
k= 1

Remarque. On peut conjecturer que log Qt (X) ~ n log Z. En

effet si l'on calcule la constante c2 dans la majoration ci-dessus, on trouve

_. /T
c2 - 2 ni -(1+e), le «2» venant de la formule de Brun-Titchmarsh.

Si l'on suppose les nombres premiers très bien répartis autour de pk, on

peut assimiler log à r
^ ^k+1

et le nombre d'éléments de E k serait
Pk Pk

le nombre de solutions de l'inéquation
00 00 00 00

Z rxr+ Z ryr<Pk avec Z E
r=l r=l i=l i=l

xu yt e {0, 1}. Le logarithme de ce nombre de solutions est équivalent à

2 /—
Pk-

Minoration : Posons k

2. Démonstration du théorème 2

c log X
+ 1 et Ak e6(pk) 2 • 3 • ...pk9

log log x_
où 0 (x) Yj P est fonction de Chebichev. Les multiples n de Ak

p^Xx

c log X
vérifient co(n) > Il y en a

log log x
qui sont inférieurs à x. On a (cf.

[Land], §57):

log Âk 6 (pk) pk+ O(pj.log2 pk) (log k +log log fe-l+o (1)).

Il vient en posant l log x, l2 log log x, /3 log log log x:

c l
k — +0(1)

h

log Ak cl +c(log c-1) (1 + (1))
et

log x \L (x)> jj-J > c exp ^ c (1 -log c) (1 + (1))
log log x
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Majoration : En développant par la formule multinomiale (cf. [Com],

t. 1, p. 38 ou [Hal 2], p. 147), on obtient:

l\k ^ 1

S z)>klPJ 2^Pil<...<Pih

On a donc, pour fceN, en désignant par £ l'ensemble des nombres sans

facteur carrés,

1 I i< Z
> <E( Z ff.

X n^Zx, neS n^Zx. neS tl k l \ p^Zx P/
co {ri) — k co {n) k

Evaluons maintenant le nombre d'entiers n < x dont les facteurs

premiers sont exactement pil9 pi2, pijt. On doit avoir

n p*i pa2 ...pak < x ; oc,- > 1
Fn 12 Flk ^ ' J

Ce qui entraîne

[log
x~]—-I ; <xj > 1

Or le nombre de solutions de cette inéquation est un nombre de combi-

' '+-S /flog* / log 2]\ 1 /
naisons avec repetition et vaut I

7 < — f

On a donc

k k \ \log 2

- YK—x ,â, ft!)2 V À, p) \1«S2,
co{n) =k

et

Z (i°g xßog iy
V- -V P JZ i <* Z

»2, jt* (j!)2
co (n) z^k

aJ ak 1
On utilise la majoration X < 77777 — ~ valable pourj^kOO(/c!) 1 — a/(fe +1)

« < (Ä:+l)2. On sait d'autre part (cf. [Land] §28) qu'il existe B tel que

Z _ < log log v + B, et on choisit:
P^zX P
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On obtient alors

x (l2 +B)k(Z/log 2)k
u*><- [1+0(i

et en remplaçant log k\ par k log k + O (k), on obtient

/,W<x'-exp (3c(l+.

ce qui achève la démonstration du théorème 2.

§ 3. Valeurs extrêmes de f(ri)+f (n +1)

1) Fonction o (ri) somme des diviseurs de n.

On remarque d'abord que, lorsque n -* + oo

(2) ff(n)=n fi {1 + - + + 2
f°||« \ P P

n(i+o(i)) n
p»ii» V p p

P ^ log n

autrement dit, les facteurs premiers supérieurs à log n ne modifient guère

g (ri). De tels facteurs, il y en a au plus log n / log log n et:
log«

y-1- / 1 1\ y-y
1 / 1 X l0gl0S"

n 1 H h...H—7 < n - T~T < 1 — —
P«||n \ P P / p*\\n 1-1 IP \ log n

p > log n p > log n

-i+ 0(1)
log log n

ce qui démontre (2).
3

Ensuite, on a pour tout n, a (ri) > n et pour n pair, g (n) > - /z. On a

5
donc pour tout n: g (ri) + g («+1) > - n. Inversement, pour k fixé, le

nombre n 4p2Pz pk + 1 est tel que n et n + 1 n'ont pas (à part 2)

de facteurs premiers inférieurs à (1 — a) log n et donc vérifie : g (n) + g (n +1)

^ n(l+ o(l)).
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