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Gauss-Bonnet formula for smooth manifolds; an excellent account of the
development in this direction is to be found in the article by Chern ([13]; see
especially formula (4) on p. 343).

2. POLYA’S PROOF OF DESCARTES THEOREM

We start from the position that Euler’s formula for a polyhedral 2-sphere S? is
known ; that is to say, if P is a polyhedron homeomorphic to S* with V vertices, E
edges and F faces, then

V_E+F=2. 2.1)

In Figure 1 (a), for example, V =4, E = 6, F = 4. Thus 4 — 6 + 4 = 2,
verifying (2.1). Euler’s formula is discussed in many elementary books on
polyhedra and many proofs have been given. The book by Courant and Robbins,
What is Mathematics? [4] contains a proof using networks. Polya’s book,
Mathematics and Plausible Reasoning, Vol. 1, [1], has a sequence of problems
that leads the reader to a proof. Lakatos’ Proofs and Refutations [8] is cleverly
written in the format of a dialogue between a mathematics teacher and his
- extremely bright students (who continually find counterexamples to the
proposed theorems). The “general” proof must be attributed to Poincaré [10]
who, as explained in the Introduction, proved that the generalized Euler-
Poincare¢ characteristic is a topological invariant which takes the value 2 on any
even-dimensional sphere.

We now show how Polya deduced Descartes theorem from (2.1); this
argument is essentially that given in [2].

Let P be a polyhedron homeomorphic to 2, subdivided into vertices, edges
and faces in such a way that every edge is incident with exactly two faces.
Number the vertices 1, 2, ..., V and let the sum of the plane face angles at the i-th
vertex be o;. Then the angular defect at the i-th vertex is

61':275_0-1'.

Note that §; will be positive if P is convex, but that, in general, §, may be negative
~or zero. Let

We want to show that A = 4n.
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Proceed by numbering the faces 1, 2, ..., F and let S; be the number of sides !

of the j-th face. Then '
12+ S,—2)n+(S3-2)n + ... + (Sp—2) =

= V(2n) — i 8 = V(2n) —

Rearranging the terms on the left yields

v |
n (Z Sj>—2nF=2nV-—A. (2.2)
i=1
Now, since the total number of sides of the faces which make up the polyhedron
F
P 1s twice the number of edges, E, on P, we have Z S; = 2E, so that
. =

T (2E) — 2nF = 2nV — A
or
A = 2nV — 2nE + 2nF

= 2n(V—E+F).
But, by Euler’s formula (2.1), V — E + F = 2. Thus
A=2mQ) =

Our first observation is that Polya’s argument immediately generalizes to
arbitrary 2-dimensional polyhedra (in the topologists’ sense!). Thus let P be any
2-dimensional polyhedron, subdivided into vertices, edges and faces in such a
way that every edge is incident with exactly two faces. Define the Euler |
characteristic,  (P), by

Srmeniys ety

«(P) =V —E+F, 2.3) |

where P has V vertices, E edges and F faces. Define the total angular defect A as
above; that is

1) It is very important to the understanding of this proof to distinguish between the
meaning of a side and an edge. If a line segment joining two vertices is considered in relation
to a face, to whose boundary it belongs, it is called a side of that face; if it is considered in
relation to the whole polyhedron (forming the common boundary of two neighboring
faces) it is called an edge of that polyhedron. Thus we see that we may think of the
polyhedron as being formed by taking the individual faces and joining the sides of the faces
to each other in pairs so that each pair then becomes a single edge of the polyhedron.
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where 8, is the sum of the plane face angles at the i-th vertex and 6, = 2n — o,
Then Polya’s argument immediately yields the theorem

THEOREM 1. A (P) = 2ny (P).

A polyhedron P of the type discussed in this theorem is described in the
literature of topology as a two-dimensional pseudomanifold. Included in this
category is the family of closed surfaces. If S is such a surface we may take a
rectilinear model of S, that is, a polyhedron P, homeomorphic to S, and
subdivided into vertices, edges and faces as above. Closed surfaces are either
orientable or non-orientable. An orientable closed surface of genus g (g=0) may
be thought of as formed by attaching g handles to a sphere S2. Thusifg = 0 we
have the sphere;ifg = 1 we have the torus;ifg = 2 we have the double torus...
In general, for an orientable surface S of genus g,

x(S) =2 -2g. (2.4)

Observe that y = 2 for all of the models displayed in Figure 1. When the
manifold is homeomorphic with a torus y = 0. Figure 2 (a) serves to illustrate
this example of Theorem 1. Notice that the figure has 14 vertices, 29 edges and 15
faces (2 triangles and 13 quadrilaterals). The computation for the sum of the
angular deficiencies produced at all of the 14 vertices may be verified to be 2my.
This computation may be displayed, instructively, as follows:

A=14Q2n) - 23-2)n + 13(4—2) 1)
= 14(2m) — 29 2m) + 15 (2n)

Vv E F
= 21 (14—29+15)

A B A

+ 7/////// Br———/////l/./'/“//\/l/A

= ;

C

sphere , .
(split along arc AB) + Mobius band = projective plane

FIGURE 3
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FIGURE 4

A non-orientable surface may be formed from a sphere S? by adding cross-
caps (i.e., Mobius bands). If one cross-cap is added, we have the projective plane
(see Figure 3). In general, for a non-orientable surface S with k cross-caps

x(S)=2—k. ' (2.5)

We now exemplify Theorem 1 for the projective plane (k=1). A cellular
subdivision of the projective plane is shown in Figure 4 (where, for aesthetic
reasons, we have maintained the rounded edges rather than draw, artificially, a
strictly polyhedral figure). The cells consist of 6 quadrilaterals and one hexagon,
so that the sum of all the face angles may be expressedby6 (4—2)n + 1 (6—2) .
There are 9 vertices, 15 edges and 7 faces. We display the computation for A in
the same manner as the last example so that it may suggest the general approach.

A=9Q2n) — {6(4-2)n + 1(6-2)n)
= 9Q2n) — 152n) + 7(2n)

.V E F
= 2 (9—15+7)
= 2n (1)

= 21.
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Theorem 1 exhibits a remarkable fact about the total angular defect of P. For,
quite apart from the precise relationship between A and y which it expresses, it
shows that A (P) depends only on the topological type of P. It would be
remarkable enough that A (P) is independent of the cellular subdivision of P;
but, in fact, it does not vary if P is replaced by some other polyhedron
homeomorphic to P. Thus A (P) may be said, paradoxically, to be defined by the
geometry of P—and to be independent of that geometry! In fact the situation is
even more remarkable, since the Euler characteristic is not only a topological
invariant but even a homotopy invariant; this means that we may deform P
continuously without changing  (P)—and thus without changing A (P).

3. THE ANGULAR DEFECT IN HIGHER DIMENSIONS

We look now at the possibility of obtaining a formula for the total angular
defect for a polyhedron of arbitrary dimension. We will largely confine attention
to polytopes (see [3]), that is, homeomorphs of ') $"7!, for some n > 3. As
explained in the Introduction, we will no longer expect to find any significant
relationship with the Euler characteristic, so we will concentrate on the question
of whether, for such a polytope P, we may obtain a formula for A (P) in terms of ¥,
E and F. Our first result is very general, but will prove to be applicable for certain
standard polytopes.

THEOREM 2. Let P be an arbitrary polyhedron in which every edge is
incident with precisely q faces, then

A(P) = n (2V —qE+2F). (3.1)

Proof. We have only to make a small modification of Polya’s argument. We
procecd as in the proof of Theorem 1 as far as the relation (2.2). But now

F
2, S;=4E,
j=1
so that (2.2) implies that
qnE — 2nF = 2nV — A,

from which (3.1) immediately follows.

') We explain later in the section why it is more convenient to talk of $”~ ! than of S,
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