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DESCARTES, EULER, POINCARE,
POLYA—AND POLYHEDRA

by Peter HiLTON and Jean PEDERSEN

1. INTRODUCTION

When geometers talk of polyhedra, they restrict themselves to configurations,
made up of vertices, edges and faces, embedded in three-dimensional Euclidean
space. Indeed, their polyhedra are always homeomorphic to the two-
dimensional sphere S2. Here we adopt the topologists’ terminology, wherein
dimension is a topological invariant, intrinsic to the configuration, and not a
property of the ambient space in which the configuration is located. Thus S? is
the surface of the 3-dimensional ball; and so we find, among the geometers’
polyhedra, the five Platonic “solids”, together with many other examples.
However, we should emphasize that we do not here think of a Platonic “solid” as
a solid ; we have in mind the bounding surface of the solid, not the interior. It
seems to us that geometers are sometimes able to be cavalier about this
distinction (so that, for them, a polygon may be the closed polygonal path or the
homeomorph of a disk), but we will need, in what follows, to be precise about
meanings.

In this article we retrace an interesting historical path in the study of
polyhedra and even carry the story further ourselves—though with modest
expectations! We begin with a result due to Descartes (1596-1650). Let us
consider a convex polyhedron P, homeomorphic to S2. Euclid proved that the
sum of the face angles at any vertex P is less than 27 ; the difference between this
sum and 2r 1s called the angular defect at that vertex. If we sum the angular
defects over all the vertices of P we obtain the total angular defect A ; Descartes
proved, using methods of spherical trigonometry, that A = 4x for every convex
polyhedron P. Thus in Figure 1 (b) there are 8 identical vertices on the cube and

LT
the angular defect at every vertex is > so that the total angular defect A is 4n.

Notice that the polyhedra shown in Figure 2 are not homeomorphic to S? and
they fail to satisfy the formula.
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FIGURE 2

Polya gave an argument in a lecture at Stanford University on March 6, 1974
(see [1]) todeduce Descartes’ theorem, using the fact that the Euler characteristic
of any polyhedron homeomorphic to S?is 2. Here the Euler characteristic  (P)is
given by the formula

x(Py=V—-E+F, (1.1)

where V is the number of vertices of P, E is the number of edges of P, and F is the
number of faces of P. Thus Pélya’s proof (which appears in slightly modified
form in [2]) shows that A = 2ny and hence A = 4n since x (P) = 2 when P is
homeomorphic to S2.
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However Polya’s proof really demonstrates a much more general fact;
namely that

A = 2ny (1.2)

for any 2-dimensional polyhedral manifold !). Thus if S is any rectilinear
surface, subdivided into vertices, edges and faces in such a way that every edge is
incident with exactly two faces, then formula (1.2) holds for S. Of course, we have
to interpret A somewhat more generally in the sense that, since we no longer
require convexity, we must allow the angular defect at any vertex to be negative.

Let us now take S to be any closed surface, orientable or not. Then we may
find a homeomorphic rectilinear model T of S, and we may compute A (T), x, (7).
Since we know that y (T) is a topological invariant of S—a result due to
Poincaré—it follows that A (7)), too, is a topological invariant of S, a result which
is surely rather surprising.

In the next section we give, in its more general setting, Polya’s proof of the
relation (1.2), and point to the topological significance of the result. In Section 3
we consider analogous formulae for A (P), where P is a polyhedron of dimension
greater than 2. Now Schléfli [9] generalized Euler’s formula to spheres of higher
dimension. He-succeeded in demonstrating that if P is a polyhedral subdivision
of the n-dimensional sphere S" and if N; is the number of i-dimensional cells in the
subdivision, then

Y (P) = 2 if n is even,
(1.3)
x(P) =0 if n 1s odd,
where

x(P) = 2 (=1'Ny, (1.4)

We call this alternating sum (1.4) the Euler-Poincaré characteristic of P and
note that it may be defined for any polyhedron P, of any dimension. Poincaré
[10] proved that y (P) is a topological invariant. This means that if X is any
geometric configuration embedded in some Euclidean space (of arbitrary
dimension) and if P, Q are any two polyhedra, subdivided into cells of dimension
0, 1, 2, ..., n(vertices, edges, faces, ...), such that P and Q are each homeomorphic
to X, then y (P) = y (Q). This result is one of the great triumphs of homology

1 Here, of course, we use the term “polyhedron” in the more general sense favored by
topologists. Thus a polyhedron, in this broader sense, certainly need not be 2-dimensional ;
and an n-dimensional polyhedron need not be homeomorphic to an n-dimensional sphere.
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theory [12, p. 167]. For there are natural numbers p,, py, ..., p, measuring the
number of “holes” in X of dimensions 0, 1, ..., n, and one may show that, for any
polyhedron P homeomorphic to X,

T (—1)iN, = Z(=1)p,. (1.5)

The numbers pg, p;, .., p, are called the Betti numbers of X ; they are the
dimensions of the homology groups of X in dimensions 0, 1, .., n. For an
n-dimensional sphere S”, we have

Po (8") = p,(8") = L p;(S") = 0,i # O,n; (1.6)

thus (1.5) and (1.6) explain Schlifli’s result (1.3).

For any polyhedron P, we may continue to define the total angular defect
A (P) exactly as in the two-dimensional case. However, A (P) obviously depends
only on the two-dimensional structure of P—its vertices, edges and faces—so
that we cannot expect, for higher-dimensional polyhedra, either that A (P) will be
an invariant or that it will be related to the Euler-Poincaré characteristic.
However, we may still attempt to generalize P6lya’s argument and thus to
express A (P) as a function of V, E and F (or, in our present notation, N,, N, and
N,).

We prove in Section 3 that, indeed, A (P) may be expressed in terms of
Ny, N4, N,, provided only that the cellular structure on P has the property that
there exists an integer g such that every edge of P is incident with exactly g faces.
We give three examples of standard cellular subdivisions of S” with this property.
Reverting to the language of geometers (as exemplified by Coxeter [3]), such
structures on S" are called polytopes, and the three polytopes considered are
called, in [3], respectively simplexes, cross polytopes, and parallelotopes—and
will be so referred to by us. The numbers g in these cases are, respectively
n, 2n — 2, n. We compute A in these three cases. We remark that the fact that A
is, in these cases, a function of N,, N, and N, shows that it is a combinatorial,
rather than a geometric, invariant; that is, we may pull and push the n-sphere
around, squeeze it, squash it, elongate it, stretch it, without altering A. Once
again our intuition may be at fault!

We close this article with a brief resumé of the history of the question. In this
resume, as in the article itself, we do not take account of another direction in
which it may be said that formula (1.2) has been generalized—in the direction of
differential geometry. For formula (1.2) contains the seeds of the celebrated
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Gauss-Bonnet formula for smooth manifolds; an excellent account of the
development in this direction is to be found in the article by Chern ([13]; see
especially formula (4) on p. 343).

2. POLYA’S PROOF OF DESCARTES THEOREM

We start from the position that Euler’s formula for a polyhedral 2-sphere S? is
known ; that is to say, if P is a polyhedron homeomorphic to S* with V vertices, E
edges and F faces, then

V_E+F=2. 2.1)

In Figure 1 (a), for example, V =4, E = 6, F = 4. Thus 4 — 6 + 4 = 2,
verifying (2.1). Euler’s formula is discussed in many elementary books on
polyhedra and many proofs have been given. The book by Courant and Robbins,
What is Mathematics? [4] contains a proof using networks. Polya’s book,
Mathematics and Plausible Reasoning, Vol. 1, [1], has a sequence of problems
that leads the reader to a proof. Lakatos’ Proofs and Refutations [8] is cleverly
written in the format of a dialogue between a mathematics teacher and his
- extremely bright students (who continually find counterexamples to the
proposed theorems). The “general” proof must be attributed to Poincaré [10]
who, as explained in the Introduction, proved that the generalized Euler-
Poincare¢ characteristic is a topological invariant which takes the value 2 on any
even-dimensional sphere.

We now show how Polya deduced Descartes theorem from (2.1); this
argument is essentially that given in [2].

Let P be a polyhedron homeomorphic to 2, subdivided into vertices, edges
and faces in such a way that every edge is incident with exactly two faces.
Number the vertices 1, 2, ..., V and let the sum of the plane face angles at the i-th
vertex be o;. Then the angular defect at the i-th vertex is

61':275_0-1'.

Note that §; will be positive if P is convex, but that, in general, §, may be negative
~or zero. Let

We want to show that A = 4n.
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