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DESCARTES, EULER, POINCARÉ,
PÖLYA—AND POLYHEDRA

by Peter Hilton and Jean Pedersen

1. Introduction

When geometers talk of polyhedra, they restrict themselves to configurations,
made up of vertices, edges and faces, embedded in three-dimensional Euclidean

space. Indeed, their polyhedra are always homeomorphic to the two-
dimensional sphere S2. Here we adopt the topologists' terminology, wherein

dimension is a topological invariant, intrinsic to the configuration, and not a

property of the ambient space in which the configuration is located. Thus S2 is

the surface of the 3-dimensional ball; and so we find, among the geometers'

polyhedra, the five Platonic "solids", together with many other examples.

However, we should emphasize that we do not here think of a Platonic "solid" as

a solid ; we have in mind the bounding surface of the solid, not the interior. It
seems to us that geometers are sometimes able to be cavalier about this
distinction (so that, for them, a polygon may be the closed polygonal path or the

homeomorph of a disk), but we will need, in what follows, to be precise about
meanings.

In this article we retrace an interesting historical path in the study of

polyhedra and even carry the story further ourselves—though with modest

expectations! We begin with a result due to Descartes (1596-1650). Let us
consider a convex polyhedron P, homeomorphic to S2. Euclid proved that the

sum of the face angles at any vertex P is less than 2n ; the difference between this
sum and 2n is called the angular defect at that vertex. If we sum the angular
defects over all the vertices of P we obtain the total angular defect A ; Descartes

proved, using methods of spherical trigonometry, that A 4n for every convex
polyhedron P. Thus in Figure 1 (b) there are 8 identical vertices on the cube and

n
the angular defect at every vertex is -, so that the total angular defect A is 4n.

Notice that the polyhedra shown in Figure 2 are not homeomorphic to S2 and
they fail to satisfy the formula.
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Pôlya gave an argument in a lecture at Stanford University on March 6, 1974

(see [1]) to deduce Descartes' theorem, using the fact that the Euler characteristic
of any polyhedron homeomorphic to S2 is 2. Here the Euler characteristic x (P) is

given by the formula

X(P) V - E + F, (LI)

where V is the number of vertices of P, E is the number of edges of P, and F is the

number of faces of P. Thus Polya's proof (which appears in slightly modified

form in [2]) shows that A 2nx and hence A 471 since % (P) 2 when P is

homeomorphic to S2.
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However Pôlya's proof really demonstrates a much more general fact;

namely that

A 2k% (1.2)

I for any 2-dimensional polyhedral manifold *). Thus if S is any rectilinear
jj surface, subdivided into vertices, edges and faces in such a way that every edge is

I incident with exactly two faces, then formula (1.2) holds for S. Of course, we have

\ to interpret A somewhat more generally in the sense that, since we no longer

require convexity, we must allow the angular defect at any vertex to be negative.
I Let us now take S to be any closed surface, orientable or not. Then we may
] find a homeomorphic rectilinear model T of S, and we may compute A (T), % T).
j Since we know that x (T) is a topological invariant of S—a result due to

Poincaré—it follows that A T\ too, is a topological invariant of S, a result which
is surely rather surprising,

j In the next section we give, in its more general setting, Pôlya's proof of the
J relation (1.2), and point to the topological significance of the result. In Section 3

5 we consider analogous formulae for A (P), where P is a polyhedron of dimension
;j greater than 2. Now Schläfli [9] generalized Euler's formula to spheres of higher
;j dimension. He succeeded in demonstrating that if P is a polyhedral subdivision
I of the «-dimensional sphere Sn and ifNt is the number of /-dimensional cells in the
I subdivision, then

I X (P) 2 if h is even,
j (1.3)
j x (P) 0 if n is odd,

where

I
7. (P) t (-1 (1.4)

I i 0

We call this alternating sum (1.4) the Euler-Poincaré characteristic of P and
note that it may be defined for any polyhedron P, of any dimension. Poincaré
[10] proved that % (P) is a topological invariant. This means that if X is any
geometric configuration embedded in some Euclidean space (of arbitrary
dimension) and if P, Q are any two polyhedra, subdivided into cells of dimension

I 0, 1, 2,..., n (vertices, edges, faces,...), such that P and Q are each homeomorphic
I to X, then % (P) x (Q). This result is one of the great triumphs of homology

Here, of course, we use the term "polyhedron" in the more general sense favored by
topologists. Thus a polyhedron, in this broader sense, certainly need not be 2-dimensional ;

I and an n-dimensional polyhedron need not be homeomorphic to an rc-dimensional sphere!
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theory [12, p. 167]. For there are natural numbers p0, pu pn measuring the
number of "holes" in X of dimensions 0, 1,n, and one may show that, for any
polyhedron P homeomorphic to X,

Z(- 1)% *(-1)%. (1.5)

The numbers p0, pu pn are called the Betti numbers of X ; they are the
dimensions of the homology groups of X in dimensions 0, 1,..., n. For an
rc-dimensional sphere Sn, we have

p0 (Sn) pn CS") 1, Pi CS") - 0, i * 0, n ; (1.6)

thus (1.5) and (1.6) explain Schläfli's result (1.3).

For any polyhedron P, we may continue to define the total angular defect

A (P) exactly as in the two-dimensional case. However, A (P) obviously depends

only on the two-dimensional structure of P—its vertices, edges and faces—so

that we cannot expect, for higher-dimensional polyhedra, either that A (P) will be

an invariant or that it will be related to the Euler-Poincaré characteristic.

However, we may still attempt to generalize Poly?'s argument and thus to

express A (P) as a function of Vf E and F (or, in our present notation, N0, N1 and

N2).
We prove in Section 3 that, indeed, A (P) may be expressed in terms of

N0, Nl9 N2, provided only that the cellular structure on P has the property that
there exists an integer q such that every edge of P is incident with exactly q faces.

We give three examples of standard cellular subdivisions of S" with this property.
Reverting to the language of geometers (as exemplified by Coxeter [3]), such

structures on S" are called polytopes, and the three polytopes considered are

called, in [3], respectively simplexes, cross polytopes, and parallelotopes—and
will be so referred to by us. The numbers q in these cases are, respectively

n, In — 2, n. We compute A in these three cases. We remark that the fact that A

is, in these cases, a function of N0, Nu and N2 shows that it is a combinatorial,
rather than a geometric, invariant ; that is, we may pull and push the n-sphere

around, squeeze it, squash it, elongate it, stretch it, without altering A. Once

again our intuition may be at fault!

We close this article with a brief résumé of the history of the question. In this
résumé, as in the article itself, we do not take account of another direction in
which it may be said that formula (1.2) has been generalized—in the direction of
differential geometry. For formula (1.2) contains the seeds of the celebrated
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Gauss-Bonnet formula for smooth manifolds; an excellent account of the

development in this direction is to be found in the article by Chern ([13] ; see

especially formula (4) on p. 343).

2. Polya's proof of Descartes' theorem

We start from the position that Euler's formula for a polyhedral 2-sphere S2 is

known ; that is to say, if P is a polyhedron homeomorphic to S2 with V vertices, E

edges and F faces, then

V - E + F 2. (2.1)

In Figure 1 (a), for example, V 4, E 6, F 4. Thus 4 — 6 + 4 2,

verifying (2.1). Euler's formula is discussed in many elementary books on

polyhedra and many proofs have been given. The book by Courant and Robbins,
What is Mathematics? [4] contains a proof using networks. Polya's book,
Mathematics and Plausible Reasoning, Vol. I, [1], has a sequence of problems
that leads the reader to a proof. Lakatos' Proofs and Refutations [8] is cleverly
written in the format of a dialogue between a mathematics teacher and his

extremely bright students (who continually find counterexamples to the

proposed theorems). The "general" proof must be attributed to Poincaré [10]
who, as explained in the Introduction, proved that the generalized Euler-
Poincaré characteristic is a topological invariant which takes the value 2 on any
even-dimensional sphere.

We now show how Pôlya deduced Descartes theorem from (2.1); this
argument is essentially that given in [2].

Let P be a polyhedron homeomorphic to S2, subdivided into vertices, edges
and faces in such a way that every edge is incident with exactly two faces.

Number the vertices 1, 2,..., V and let the sum of the plane face angles at the i-th
vertex be c^. Then the angular defect at the i-th vertex is

Si — 2K — ot.

Note that ôf will be positive if P is convex, but that, in general, ôf may be negative
or zero. Let

A Z 5;
i 1

We want to show that A 4tl
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Proceed by numbering the faces 1, 2,F and let Sj be the number of sides x)

of the j-th face. Then

($i 2) K + (<S2 — 2) 7C -|- (S3 — 2) 7T + + (Sp — 2) K

F-(2tc) - X ô; K(2rc) ~ A-
i 1

Rearranging the terms on the left yields

n (X ^ - 27cF (2.2)

Now, since the total number of sides of the faces which make up the polyhedron
F

P is twice the number of edges, E, on P, we have £ S,- 2E, so that
7=1

tu (2F) — 2kF 2nV — A

or
A 27tF — 2kE + 2nF

2tt(F-£ + F).

But, by Euler's formula (2.1), V — E + F 2. Thus

A 2k (2) 47i.

Our first observation is that Polya's argument immediately generalizes to

arbitrary 2-dimensional polyhedra (in the topologists' sense!). Thus let P be any
2-dimensional polyhedron, subdivided into vertices, edges and faces in such a

way that every edge is incident with exactly two faces. Define the Euler

characteristic, % (P)> by

1(P) V -E + F, (2.3)

where P has V vertices, E edges and F faces. Define the total angular defect A as

above; that is

A X 8,.
i= 1

x) It is very important to the understanding of this proof to distinguish between the
meaning of a side and an edge. If a line segment joining two vertices is considered in relation
to a face, to whose boundary it belongs, it is called a side of that face ; if it is considered in
relation to the whole polyhedron (forming the common boundary of two neighboring
faces) it is called an edge of that polyhedron. Thus we see that we may think of the
polyhedron as being formed by taking the individual faces and joining the sides of the faces
to each other in pairs so that each pair then becomes a single edge of the polyhedron.
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where is the sum of the plane face angles at the i-th vertex and 2rc —

Then Polya's argument immediately yields the theorem

THEOREM 1. A (P) 2nx (P).

A polyhedron P of the type discussed in this theorem is described in the

literature of topology as a two-dimensional pseudomanifold. Included in this

category is the family of closed surfaces. If S is such a surface we may take a

rectilinear model of S, that is, a polyhedron P, homeomorphic to S, and
subdivided into vertices, edges and faces as above. Closed surfaces are either
orientable or non-orientable. An orientable closed surface ofgenus g (g^O) may
be thought of as formed by attaching g handles to a sphere S2. Thus if g 0 we
have the sphere ; if g 1 we have the torus ; if g 2 we have the double torus;..
In general, for an orientable surface S of genus g,

Observe that % 2 for all of the models displayed in Figure 1. When the
manifold is homeomorphic with a torus x 0. Figure 2 (a) serves to illustrate
this example of Theorem 1. Notice that the figure has 14 vertices, 29 edges and 15

faces (2 triangles and 13 quadrilaterals). The computation for the sum of the

angular deficiencies produced at all of the 14 vertices may be verified to be 27ix-
This computation may be displayed, instructively, as follows :

A 14 (27t) - {2(3-2)71 + 13(4-2)71}
14 (27t) - 29 (2tc) + 15 (2TT)

V E F
2TT(14-29 + 15)

0.

X(S) 2-2g. (2.4)

c

sphere
(split along arc AB) + Möbius band

c

projective plane

Figure 3
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P

Figure 4

A non-orientable surface may be formed from a sphere S2 by adding cross-

caps (i.e., Möbius bands). If one cross-cap is added, we have the projective plane
(see Figure 3). In general, for a non-orientable surface S with k cross-caps

X(S) 2-k. (2.5)

We now exemplify Theorem 1 for the projective plane (k= 1). A cellular
subdivision of the projective plane is shown in Figure 4 (where, for aesthetic

reasons, we have maintained the rounded edges rather than draw, artificially, a

strictly polyhedral figure). The cells consist of 6 quadrilaterals and one hexagon,

so that the sum ofall the face angles may be expressed by 6 (4 — 2) tc + 1 (6 — 2) n.

There are 9 vertices, 15 edges and 7 faces. We display the computation for A in
the same manner as the last example so that it may suggest the general approach.

A 9 (In) - {6 (4-2) n + 1 (6-2) n}

9 (2tu) - 15 (2n) + 7 (In)
V E F

2ti(9-15 + 7)

2k (1)

2k
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Theorem 1 exhibits a remarkable fact about the total angular defect of P. For,

quite apart from the precise relationship between A and x which it expresses, it
shows that À (P) depends only on the topological type of P. It would be

remarkable enough that A (P) is independent of the cellular subdivision of P ;

but, in fact, it does not vary if P is replaced by some other polyhedron

homeomorphic to P. Thus A (P) may be said, paradoxically, to be defined by the

geometry of P—and to be independent of that geometry! In fact the situation is

even more remarkable, since the Euler characteristic is not only a topological
invariant but even a homotopy invariant; this means that we may deform P

continuously without changing % (P)—and thus without changing A (P).

3. The angular defect in higher dimensions

We look now at the possibility of obtaining a formula for the total angular
defect for a polyhedron of arbitrary dimension. We will largely confine attention
to polytopes (see [3]), that is, homeomorphs of1) S"-1, for some 3. As

explained in the Introduction, we will no longer expect to find any significant
relationship with the Euler characteristic, so we will concentrate on the question
of whether, for such a polytope P, we may obtain a formula for A (P) in terms of V,

E and F. Our first result is very general, but will prove to be applicable for certain
standard polytopes.

Theorem 2. Let P be an arbitrary polyhedron in which every edge is

incident with precisely q faces, then

A (P) n (2V — qE + 2F) (3.1)

Proof We have only to make a small modification of Polya's argument. We
proceed as in the proof of Theorem 1 as far as the relation (2.2). But now

I Sj qE,
j= 1

so that (2.2) implies that

qnE — 2kF 2nV — A

from which (3.1) immediately follows.

*) We explain later in the section why it is more convenient to talk of S"~1 than of S".
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The restriction in the hypothesis of Theorem 2, that every edge be incident
with precisely q faces, is very severe, except in the case that P is 2-dimensional.
What is remarkable is that it is satisfied in the case of three standard polytopes.
These we now describe. In doing so it will be convenient sometimes to adopt the
notation of the Introduction, replacing V, E, F by N0, Nx, N2, and, generally,
using Ni to designate the number of cells of dimension i in the polytope P.

SIMPLEXES are produced, as illustrated in Figure 5, by beginning with a

single point a0 ; we then take this existing structure, introduce another point and

join it to the previous one, thus producing (an edge or line segment) ; again, we

begin with this existing structure, introduce a single point, not in the linear space

spanned by a1? and join it to each of the existing points to produce a2 (a triangle
or 2-simplex) ; we continue by taking the structure of a2, introducing a single

point, not in the linear space spanned by a2, and joining that point to each of the

existing points to obtain ot3 (a tetrahedron or 3-simplex) ; etc. In the general case

the (n +1) points we have introduced are the vertices ofan rc-dimensional simplex,

or n-simplex, an, whose cells are themselves simplexes formed by subsets of the

When all the edges are equal these structures are called regular simplexes, in

[3] denoted a,. The af of Figure 5 should be viewed as though they are in
perspective since they were intentionally drawn to show a symmetric placement
of the vertices in a4.

\
<*3

Simplexes

Figure 5
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If we remove the interior of we obtain a cellular subdivision of Sn~1. It is

for this reason that we prefer to speak in this section of Sn~1 rather than Sn. Since

every proper subset of the (n +1) vertices of an span a cell of Sn~ we see that, for
this polytope, every edge is incident with precisely (n — 1) faces, so that we may
apply Theorem 2 with q n — 1. Since for this polytope, with n ^ 3,

we have, from Theorem 2,

Corollary 1. Let be the polytope obtained by subdividing Sn 1

as the boundary of an n-simplex, n ^ 3. Then

A (Pi) — "jjr (n — 4) (n +1) (n + 3).

Proof We have, from (3.1) and (3.2)

A (Pi) - «(20,-U) -
— (« +1) (12 — 3n(n — l) + 2n(n— 1))
6

- ^(n-{-l)(n2-n—12).
6

It is interesting to note that, while a simplex is convex, A (PJ is negative for
n ^ 5 (and zero for n 4).

We now turn to our second example of a polytope.
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CROSS POLYTOPES may be introduced by recognizing that an

important aspect of n-dimensional space is the possibility of having n mutually
perpendicular lines through any point 0. For example, each regular simplex a„_ x

(of Figure 5) involves n points equidistant from 0. Now ifwe choose to take points
equidistant from 0 in both directions we obtain the cellular subdivision of the

(n — l)-sphere called a cross polytope. These have 2n vertices and their (n — l)-cells
consist of 2" of the an_ fs. Figure 6 illustrates the cases where n is equal to 1,2, 3,

and 4 respectively. Thus ßx is a pair of points (vertices) and we can think of
progressing from ßf to ßI + 1 by beginning with ßf, introducing a pair of
diametrically opposed points (vertices), not in the linear space spanned by ßf, and

then joining each of these points to the existing points of ßf (but not to each

other). The polytope ß„, which we will call P2, is, in fact, homeomorphic to S"~ L

It can easily be shown by induction that

We now prove

Proposition 1. In the polytope P2 every edge is incident with precisely

(2n — 4) faces, n ^ 2.

Proof. We first assert that it is plain that in ß„ every vertex is incident with
precisely (2n — 2) edges. This follows by an easy induction on n. For ßn_x has

(2n — 2) vertices and every vertex is, by induction, incident with (2n — 4) edges.

Thus a vertex of ß„_! is incident with ((2n~4) + 2) edges of ßn, while a new

vertex of ß„ is incident with (2n —2) edges of ß„.

Now suppose that, in ß„_ i, every edge is incident with (2n — 6) faces—this is

certainly true if n 3. Then an edge of ßw _ x is incident with ((2n — 6) + 2) faces

of ß„, while a new edge of ß„ is incident with (2n — 4) faces of ß„ (since a vertex of
ß,,-! is incident with (2n — 4) edges of ß„_i).

This proof illustrates how we pass from ß„_ x to ß„ by "stepping up
dimensions by 1". This is the point ofview of topologists, who introduced such an

idea into combinatorial topology without, perhaps, realizing that it had already
been introduced by the geometers. Topologists call the passage from ß„_ i to ßn

0 ^ k ^ n — 1

Thus, in particular, for this polyhedron P2,

4
V 2n, E 2n(n— 1), F -n(n—l)(n — 2) (3.3)
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suspension, and apply this idea to arbitrary topological spaces. Thus the

suspension of X is obtained by joining X to two independent points or,
equivalently, by taking two cones with base X and joining them together along
their bases.

Returning to P2, we are now ready to prove

Corollary 2. Let P2 be the polytope obtained by subdividing S"-1 as a

cross polytope. Then

4tt
A(P2) - y n(n2

Proof. We assemble the facts from (3.1), (3.3) and Proposition 1 to infer that

g
A (P2) n (4n — 4n (n — 1) (n — 2) + -n(n— 1) (n — 2))

4nn
- (3 - (n-1)(»-2))

4iz

- yn(n2-3n-l).

Here we note that À (.P2) is negative for n ^ 4.

Finally we turn to our third example of a polytope.

Ï2 Ï3

Parallelotopes

Figure 7

PARALLELOTOPES are illustrated in Figure 7. The passage from yi to
Yi +1 is achieved by translating y,(notalong any of its own lines) from its initial to
a final position and then joining in pairs each of the original points with the
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corresponding point of the translated, figure. Ifall edges have the same length the j

polytope is called a measure polytope. The quantities Nk can be computed by I

considering the passage from yf to yi+1. Thus we readily obtain the inductive
relation j

N (yi + 1)k 2N (yi)k + N (Yi)k_k^i. (3.4) j

Now yn is, combinatorially, a hypercube—we specialize the construction by j

taking y x to be the unit interval and always translating orthogonally by unit |

distance. Thus the boundary of yn is topologically Sn~1. We call the boundary P3

and infer from (3.4) that I

•V {P3)k2"*("),0 < A ^ 1 j

Note that, for n 3, we get, combinatorially, the unit cube, with 8 vertices, 12 j

edges, and 6 faces. In general the polytope P3, with n ^ 3, yields the values \

V 2", E 2n~ln, F 2n~3 n (n—1). (3.5) -j

By an argument very similar to, but simpler than, that of Proposition 1, we

may show |

Proposition 3. In the polytope P3, with n ^ 3, every edge is incident
with (n—1) faces. ;

We are now ready to prove

Corollary 4. Let P3 be the polytope obtained by subdividing S"-1 as

the boundary of an n-dimensional parallelotope, n ^ 3. Then

A (P3) —2"~2n(n2 — n — 8).

Proof From (3.1), (3.5) and Proposition 3 we have

A(P3) tc (2"+1 - 2n~1 n (n — 1) + 2n~2 n{n-\))
2"~2 tu (8 - n(n-l))
— 2"~2 71 (n2 —n —8).

Here we note that A (P3) is negative for n ^ 4.

The fact that A (PJ, A (P2\ and A (P3) are all different (except for n 3)

shows that the total angular deficiency has no chance of being a topological



POLYHEDRA 341

invariant for polyhedra of dimension ^ 3. On the other hand it is still striking
that A depends only on the cellular structure and is independent of the

underlying geometric structure.

Remarks, (a) The polytopes Pl9 P2, P3 not only enjoy the property that
each edge of Pt is incident with the same number of faces of Pb i 1,2, 3—the

property we used to calculate A (Pf) from Theorem 1—they also enjoy the

property that each face has the same number of sides. This latter property could
also have been used to calculate A (P). Thus if P is a polyhedron subdivided so

that each face has the same number s of sides, then one may show that

A (P) 2nV - tcP (s- 2). (3.6)

It is easy to deduce either of the formulae (3.1), (3.6) from the other if the

polyhedron P enjoys both the relevant properties. For if every edge of P is
incident with q faces and every face of P has s sides, then

qE sF (3.7)

Of course there is an equality corresponding to (3.7) in higher dimensions.

(b) The polytopes P2 and P3 may be regarded as dual, in the sense that there
is a one-one correspondence between the cells of P2 of dimension k and the cells

Figure 8

Data for Pu P2, P3 when n 4

Name
of polytope

(Pi)
N0 N2

Number
of sides

on
each
N2

Number
offaces
incident

with
each edge

A

Simplex (PJ 5 10 10 5 3 3 0

Cross
polytope (P2) 8 24 32 16 3 4 — 1671

Parallelotope (P3) 16 32 24 8 4 3 — 1671
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of P3 of dimension *) (n— 1) — k. Moreover, the incidence relations are carried

over by this duality ; thus if, in P2, every (/ — l)-face is incident with 2) sf i-faces,

then, in P3, every (n — i)-face is incident with st (n — i — l)-faces (and there is a

symmetrical statement interchanging P2 and P3). In this sense Px is selfdual.

Figure 8 displays these dualities for n 4, as well as the value of A.

3. Historical comment and summary

René Descartes (1596-1650) and Leonhard Euler (1707-1783) worked on
these subjects independently—yet, as we have seen, Pôlya (1887- has shown
that their seemingly different formulae for convex polyhedra homeomorphic to
S2 are entirely equivalent to each other. One might believe from the evidence that
Euler may have known about Descartes' work on this subject. That would be an

erroneous assumption since Descartes' work on this matter [5] was not printed
until a century after Euler's death (see [1], p. 56).

Euler [6] offered a variety of verifications but no formal proof of his formula.
We have observed that each of the formulae is somewhat surprising by itself and
that their connection rather defies intuition since at first glance they seem to be

dealing with different qualitative aspects of polyhedra. As a matter of fact neither
Euler's nor Descartes' formula is easy to prove independently ; yet, as we have

seen, it is not at all difficult to follow Pôlya's proof that the two formulae are

equivalent.

The formulae diverge in higher dimensions so that their relationship is a

special phenomenon of dimension 2. Euler's formula was generalized by Ludwig
Schläfli [9], a Swiss mathematician of the 19th century (1814—1895), who
described, in effect, the Euler-Poincaré characteristic of an «-dimensional sphere

Sn, subdivided as a polytope, a combinatorial structure attributed by Coxeter to
Reinhold Hoppe [11]. Poincaré (1854-1912) gave a definition of the Euler-
Poincaré characteristic for arbitrary polyhedra, and one proves now, by

invoking the topological invariance of the homology groups (see [12]) that the

Euler-Poincaré characteristic is a topological invariant.

*) The precise form of this duality shows how "correct" it is to regard Sn 1
as (n— 1)-

dimensional, rather than «-dimensional.
2) In fact, st 2(n — i— 1).
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On the other hand, there will be no straightforward generalization to higher

dimensions of Descartes' formula for the total angular defect of a polyhedron

homeomorphic to S2, since this defect ceases in higher dimensions to be a

topological invariant. However it remains, under suitable restrictions on the

cellular structure, a combinatorial invariant in a certain strict sense and thus

independent of the underlying geometry of the polyhedron.
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