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APPENDIX:
TORSION POINTS OF ABELIAN VARIETIES
IN CYCLOTOMIC EXTENSIONS

by Kenneth A. RIBET )

Let k be a number field, and let k be an algebraic closure for k. For each prime
p, let K, be the subfield of k obtained by adjoining to k all p-power roots of unity

in k. Let K be the compositum of all of the K »1.€., the field obtained by adjoining

to k all roots of unity in k.

Suppose that A4 is an abelian variety over k. Mazur has raised the question of -
whether the groups A (K ) are finitely generated [4]. In this connection, H. Imai
[1] and J.-P. Serre [5] proved (independently) that the torsion subgroup of
A (K ,)is finite for each p. The aim of this appendix is to prove that more precisely
one has the following theorem, cf. [3], §II, Remark 3.

THEOREM 1. The torsion subgroup A (K),.. of A(K) is finite.

Let G be the Galois group Gal (k /k) and let H be its subgroup Gal (k/K). For

each positive integer n, let 4 [n] be the kernel of multiplication by nin 4 (ﬁ). For
each prime p, let V, be the Q,-adic Tate module attached to A. If M is one of
these modules, we denote by M the set of elements of M left fixed by H. Since
H is normal in G, M¥ is stable under the action of G on M.

Because of the structure of the torsion subgroup of 4 (E), one sees easily that
Theorem 1 1s equivalent to the conjunction of the following two statements:

THEOREM 2. For all but finitely many primes p, we have A [p]? = 0

THEOREM 3. For each prime p, we have VY = 0.

Indeed, Theorem 2 asserts the vanishing of the p-primary part of 4 (K),,.,
while Theorem 3 asserts the finiteness of this p-primary part.
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In proving these statements, we visibly have the right to replace k by a finite
cxtension of k. Therefore, using ([SGA 711, IX, 3.6) we can (and will) assume that -
A/k 1s semistable. Next, consider the largest subextension k' of K/k which is
unramified at all finite places of k. '

LEMMA. For each prime p, let L, be the largest extensionof k in K
which is unramified at all places of k except for primes dividing p and the
infinite places of k. Then L, is the compositum k'K,

Proof. Let A be the Galois group Gal (K/k), viewed as a subgroup of Z*.

We consider Z* as the direct product of its two subgroups Z¥and [ Zf. LetI
l#p
(resp. J) be the subgroup of A generated by the inertia groups of A4 for primes of k

which divide p (resp. which do not divide p). Then I is a subgroup of Z*, while J is
a subgroup of [ Z#. The product I x J is the subgroup of 4 generated by all -

l#p

inertia groups of 4. We have J = Gal (E/Lp), I x J = Gal (E/k’), and
Gal (k/K,) = A n ([] Zt). Now Gal (k/k'K,) is the intersection of the two
I#p

Galois groups Gal (E/k’) and Gal (E/K ,)- Putting these facts together, we
prove the desired assertion.

We now replace k by its finite extension k'. With this replacement made, K,
becomes equal to L,. Furthermore, for odd primes p, the largest extension of k in
K which is unramified outside p and infinity and which has degree prime to p is

the field obtained by adjoining to k the p-th roots of unity in k.

Proof of Theorem 2. We shall consider only primes p which are odd,

unramified in k, and such that 4 has good reduction at at least one prime of k

dividing p. Let p be such a prime and v a prime of k over p at which A4 has good

~ reduction. Suppose that the G-module 4 [p]¥ is non-zero, and let W be a simple

G-submodule of this module. The algebra End;W is a finite field F, and the
action of G on W is given by a character

¢:G - F*

since the action of G on 4 [p]" is abelian. (Here the point is simply that G/H is an
abelian group.) In particular, the image of G in Aut (4 [p]) has order prime to p.
On the other hand, the character ¢ is unramified at primes of k not dividing p
because A/k is semistable. By the discussion following the lemma, we know that
¢ factors through the quotient Gal (k (up)/k) of G; here, p, denotes the group of |
p-th roots of unity. In particular, ¢ must have order dividing p — 1, so that its
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values lie in the prime field F,. Since W was chosen to be simple, its dimension
over F, must be 1;ie., W is a group of order p.

Let x: G — F# be the mod p cyclotomic character, i.., the character giving
the action of G on p,,. Since ¢ factors through Gal (k (u,)/k), we may write ¢ in
the form ", where n is an integer mod (p— 1). We claim that n can only be 0 or 1.

To verify this claim, it is enough to check that it is true after we replace G by
an inertia group /I in G for the prime v, since 7 is totally ramified at v. We remark
that W is the I-module associated to a finite flat commutative group scheme %~
over the ring of integers of the completion of k at v, since v is such that 4 has good
reduction at v. Because #~ has order p, the classification of Tate-Oort ([8],
especially pp. 15-16) applies to % . Because v is absolutely unramified, the
classification shows immediately that %" is either étale or the dual of an étale
group. In the former case, I acts trivially on W ; in the latter case, I acts on W via
¥- This completes the verification of the claim.

Thus, if Theorem 2 is false, there are infinitely many primes p for which 4 [p]
contains a G-submodule isomorphic to either Z/pZ or to p,. Of course, the
former case can occur only a finite number of times, since 4 (k) is finite. One way
to rule out the latter case is to argue that whenever p,is a submodule of 4 [p], the
group Z/pZ 1s a quotient of the dual of A4 [p], which is the kernel of
multiplication by p on the abelian variety A dual to A. In other words, if p,
occurs as a submodule of 4 [p], then there is an abelian variety isogenous to 4"
(and therefore in fact to A) which has a rational point of order p over k. Therefore
p is a divisor of the order of a finite group that may be specified in advance, viz.
the group of rational points of any reduction of A at a good unramified prime of k
of residue characteristic different from 2. (See the appendix to Katz’s recent paper
[2] for a discussion of thic point.)

Proof of Theorem3. Suppose that pis a prime such that V¥ is non-zero. We
again choose W to be an irreducible G-submodule (i.e., Q, [G]-submodule) of
Vf. Because the action of G on W is abelian, and because W is simple, each

element of G acts semisimply on W. Since A/k is semistable, it follows that the
homomorphism

p:G - Aut (W)

giving the action of G on W is unramified at all primes of k not dividing p.
" Therefore, p factors through Gal (K ,/k)in view of the lemma and the subsequent
replacement k — k'. In other words, starting from the hypothesis that the p-
~torsion subgroup of A (K) is infinite, we have deduced that the p-torsion
subgroup of 4 (K,) is infinite.
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Of course, this situation is ruled out by the theorem of Imai and Serre
mentioned above. Nevertheless, we will sketch for the reader’s convenience an
argument which leads to a contradiction. Let v be a place of k dividing p, and let
D < G be a decomposition group for v. By ([SGA 71], IX, Prop. 5.6), the D-
module V, is an extension of D-modules attached to p-divisible groups over the
integer ring of the completion of k at ». Because of Tate’s theory [7], the
semisimplification V3 of the D-module V, has a Hodge-Tate decomposition.
(Here we should remark that submodules and quotients of Hodge-Tate modules
are again Hodge-Tate.) Since W is semisimple as a D-module (because
semisimple and abelian as a G-module), W may be viewed as a submodule of V5.
Therefore, W is a Hodge-Tate module.

By ([61, III, Appendix), we know that p is a locally algebraic abelian
representation of G. Using this information, plus the fact that p factors through
Gal (K ,/k), we find that there is an open subgroup G, of G with the following
property: the restriction of p to G, is the direct sum of 1-dimensional -
representations, each described by an integral power y, of the standard
cyclotomic character ,: G — Z}. After replacing k by a finite extension, we may .
assume that G, is G. Take a prime w of k which is prime to p and such that 4 has
good reduction at w. Let g € G be a Frobenius element for w. The eigenvalues of
p (g) will be integral powers of x, (g), 1.€., of the norm Nw of w. However, by a well
known theorem of Weil, these eigenvalues all have archimedian absolute values
equal to (Nw)'/2. This contradiction completes the proof of Theorem 3. ‘
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