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6 P. ERDÖS ET J.-L. NICOLAS

Interprétation géométrique: Le graphe de/, contenu dans l'angle droit de

sommet (n, / (ri)) et de côté parallèle aux axes, s'étrangle en n. Nous
démontrerons :

Théorème 4. La fonction n -» n — co (ri) a une infinité de points d'étranglement.

Pour démontrer ce théorème, nous construirons une infinité de points n

tels qu'il existe juste avant n, une plage de nombres ayant beaucoup de

facteurs premiers et juste après une plage de nombres ayant peu de facteurs

premiers.

§ 1. Démonstration du théorème 1

Minoration : D'après le théorème de Selberg, (cf. [Sel 2] et [Nie]) il
existe entre (1 -2e) log X et (1 -s) log X un nombre x tel que:

71 (x + f(x)) - 71 (x) ~ et 71 (x) -7ï(x- f (x)) <v
7 log X log X

pour toute fonction / (x) croissante, vérifiant f (x) > x116 et telle que

f(x) décroisse et tende vers 0.
x

On choisit f (x) c x log x. Soit k tel que pk < x < pk+On considère

la famille de nombres :

n Ak^rq1 qr, 0 < r < s

où q j,..., qr sont des nombres premiers distincts choisis parmipk+19 pk+S'
De tels nombres vérifient œ (ri) k et il y en a 2S. De plus ils vérifient:

On choisit s de façon que pk+s < x + f (x) et pk_s > x - j (x) de telle

/(*) 0sorte que s ~ On a alors :

logx

" / 1 *+/<» 2 ilog - < slog —— < log x
Ak x-f(x) ~
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Si l'on choisit c < —— on aura donc Ak < n < Ak+ ± et ces nombres
V2

n seront co-largement composés et < X. On aura donc :

Q^X)>2°>exp ^ (1~^g2

Majoration : La majoration de Qx (X) est basée sur le lemme:

Lemme 1. SozY p1 2,p2 3, ...,pk le kîème nombre premier et soit

T (a) le nombre de solutions de l 'inéquation :

XlPi + X2V2 + ••• + XrPr + Xt E { 0, 1 }

Si C > n -, on a pour x assez grand :
V 3

log T(x) < C
i

log x

Démonstration. Le nombre de solutions de l'équation:

x±pt + x2p2 + + xrpr + n xt e { 0, 1}

est le nombre S (n) de partitions de n en sommants premiers et distincts. Le
nombre T(pc) £ S (n) peut être évalué par le théorème taubérien de

n^-x
Hardy et Ramanujan (cf. [Ram]) et Roth et Szekeres donnent la formule
[Roth] :

,„8S(„) l I*
3 V log nVV l°gn

et montrent que S n)est une fonction croissante de n. On a alors :

T(x) < x S [x].
Nous nous proposons de majorer le nombre d'éléments de l'ensemble:

Ek {n I co(n) Ak+X)

Soit neEk,n ql1... q*kk;lenombre n' qx q2 qk est sans facteur

carré et n' e Ek. De plus — <pk+1. On a donc:
n

card Ek<Pk+icardE'k
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avec: E'k {n | n sans facteur carré, œ (n) k, n < Ak+ ±}.
Maintenant si neE'k, n s'écrit:

n 2l-% 31-n-l pl~yipt\1 Pfc+r —

avec xt et yt valant 0 ou 1 et xt £ yt. Il vient:

1
n

1 Pk+l t Pk+r 1
Pk

log — x± log + + xr log + + y 1 log —
Ak Pk Pk Pk

Pk
+ + yr\og +

Pk-r+l

Le nombre d'éléments de E k est donc majoré par le nombre de solutions
de l'inéquation, en xt et yt valant 0 ou 1 :

1 Pk+l t Pk+r 1
Pk

x! log + + xr log + + y± log — +
Pk Pk Pk

+ J>r log
Pk

+ < log pk+1
Pk-r+l

On en déduit: card is< N± N2, avec Nt nombre de solutions de

l'inéquation (z 1, 2):

/k \ 1 Pk+1 Pk+r
(C) xx log + + xr log + <logpk+1

Pk Pk

(£2) Jiiog— + ••• + yrlog———+ ••• < logft+i.
Pk Pk-r+l

Soit R le plus grand nombre r tel que pk+r < 2pk. On coupe l'inéquation
£1 en deux:

Ç\:£ < logpt+1,
r= 1 Pk

0°

<fi : E xrlog ' <log
r — R+1 Pk

Le nombre de variables de Ci est en fait fini, et majoré par pkpk+1- Le

nombre de variables non nulles d'une solution de Ci est majoré par

—-— logpk+1. Le nombre N[ de solutions de Ci est majoré par:
log 2
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V (PkPk+ 1\ ^
1

r ïÏ5F2I08P*+1
Ni< £ < logPft+i

j ^ ûh108 Pk+1
J

ce qui assure:
Ni exp )2)

Il résulte de l'inégalité de Brun-Titchmarsh (cf. [Hal 1] et [Mon]):

7i (x) -7i (x-y) < 2y / log j;

valable pour 1 < y < x que, pour k > 2:

r r
Pk+r ~ Pk> log (pk+r -pk)>- log 2r

On en déduit que pour r < R, on a :

Pk+r Pk+r - Pk ^ r log 2r pr
log > > > c —

Pk Pk + r 4pk Pk

Toute solution de est donc solution de l'inéquation:

1

xip1 + x2p2 + + xrpr + < -PklogPk+i
c

et d'après le lemme précédent, on a:

log N\ O(Va)
et le nombre de solutions de £ t vérifie :

logJVj 0(jpk).
On démontre de même que le nombre N2 de solutions de £2 vérifie:

logJV2 0(vfo.
Ce qui entraine:

log (card E\) < log Nt + log N2 O

et:

card Ek<pk+1 (card Ék) exp (y/Jk))

Finalement, l'ensemble des nombres co-largement composés est
00

u Ek;la quantité g, (+) de tels nombres < X vérifie, en posant
4 1

Ako< X < Ako+i, ce qui entraine log ~ pki>:
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ko

Qi(x) < Z exp (O+pk))< k0expJpkj) < exp (c2 *Jlog X).
k= 1

Remarque. On peut conjecturer que log Qt (X) ~ n log Z. En

effet si l'on calcule la constante c2 dans la majoration ci-dessus, on trouve

_. /T
c2 - 2 ni -(1+e), le «2» venant de la formule de Brun-Titchmarsh.

Si l'on suppose les nombres premiers très bien répartis autour de pk, on

peut assimiler log à r
^ ^k+1

et le nombre d'éléments de E k serait
Pk Pk

le nombre de solutions de l'inéquation
00 00 00 00

Z rxr+ Z ryr<Pk avec Z E
r=l r=l i=l i=l

xu yt e {0, 1}. Le logarithme de ce nombre de solutions est équivalent à

2 /—
Pk-

Minoration : Posons k

2. Démonstration du théorème 2

c log X
+ 1 et Ak e6(pk) 2 • 3 • ...pk9

log log x_
où 0 (x) Yj P est fonction de Chebichev. Les multiples n de Ak

p^Xx

c log X
vérifient co(n) > Il y en a

log log x
qui sont inférieurs à x. On a (cf.

[Land], §57):

log Âk 6 (pk) pk+ O(pj.log2 pk) (log k +log log fe-l+o (1)).

Il vient en posant l log x, l2 log log x, /3 log log log x:

c l
k — +0(1)

h

log Ak cl +c(log c-1) (1 + (1))
et

log x \L (x)> jj-J > c exp ^ c (1 -log c) (1 + (1))
log log x
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