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6 P. ERDOS ET J.-L. NICOLAS

Interprétation géométrique: Le graphe de f, contenu dans I'angle droit de |
sommet (n, f (n)) et de coté paralléle aux axes, s’étrangle en n. Nous
démontrerons:

THEOREME 4. La fonction n — n — w (n) a une infinité de points d’étrangle-
ment. |

Pour démontrer ce théoréme, nous construirons une infinité de points n
tels qu’il existe juste avant n, une plage de nombres ayant beaucoup de
facteurs premiers et juste aprés une plage de nombres ayant peu de facteurs
premiers.

§ 1. DEMONSTRATION DU THEOREME 1

Minoration : D’aprés le théoréme de Selberg, (cf. [Sel 2] et [Nic]) il
existe entre (1 —2¢) log X et (1 —¢) log X un nombre x tel que:

J(x)

log x

S (%)

n(x+ f(x)) —n(x) ~ log x

et n(x) —n(x—f(x) ~

pour toute fonction f(x) croissante, vérifiant f(x) > x'/°

X
jl) décroisse et tende vers O.
X

et telle que

On choisit f(x) = ¢ \/—x—log x. Soit k tel que p, < x < pi4 1. On consi-
dére la famille de nombres:

n=Ak_.,.q1...q,,, 0<7'<S

ougqy, ..., g, sont des nombres premiers distincts choisis parmipy . 1, ..., Pyt s
De tels nombres vérifient w (n) = k et il y en a 2°. De plus ils vérifient:

n < Ak (pk +s> .
Pr- s
On choisit s de fagon que p,., < x + f(x) et pp_s =>x — f (x) de telle

Jx)

log x

. On a alors:

sorte que s ~

n x + f(x)
log— < slog——— < 2¢%1 :
gAk\S gx——f(x) = c“log x
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1
Si ’on choisit ¢ < —— , on aura donc 4, <n < A, et ces nombres

V2
n seront w-largement composés et < X. On aura donc :

s (1—¢)log 2
Q,(X) > 2°> exp < 77 \/logX>-

Majoration : La majoration de @, (X) est basée sur le lemme:

. LemME 1. Soit p; = 2,p, = 3,.,p le k™ nombre premier et soit
- T(x) le nombre de solutions de I’inéquation :

XiPy + Xps + oo + X0, + ... <x, x;€{0,1}.

Si C>mn \/%, on a pour x assez grand:

X

log T(x)<C\/ .
log x

Démonstration. Le nombre de solutions de ’équation:
X1Py + XoPy + oo +X,p, + ... =n, x,€{0,1}

est le nombre S (n) de partitions de n en sommants premiers et distincts. Le
nombre T'(x) = ) S(n) peut étre évalué par le théoréme taubérien de

==X

Hardy et Ramanujan (cf. [Ram]) et Roth et Szekeres donnent la formule

[Roth]:
Py o log lo
logS(n)=n\/%\/ n <1+0<-§—ﬂ>>
3 Vlogn log n

. et montrent que S (n) est une fonction croissante de #n. On a alors:
T (x) <xS[x]
| Nous nous proposons de majorer le nombre d’éléments de ’ensemble:

E, ={n|o®) =k, n <A},

Soit neE,n = qi'... ¢i¥; le nombre n' = ¢q, q, ... q, est sans facteur

, n
carré et n’ € E,. De plus — < p,, ;. On a donc:
n

card E, < py4q card E',,
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avec: E'y = {n | n sans facteur carré, w (n) = k,n < 4,41}
Maintenant si n € E',, n s’écrit:

— 21-yk 31-yp—1 1-y1 %1 %
no=2""%3"%-1__ p, Pri1 o Diiir oo

avec x; et y; valant Oou 1l et ) x; = > y;. Il vient:

n r
log— = x; log Pt 1 + ... + x,log Sl + ...+ )1 IOgP—k
Ay Dx Px P
+ ... +y,log + ...
pk-—r+1

Le nombre d’éléments de E', est donc majoré par le nombre de solutions
de I'inéquation, en x; et y; valant 0 ou 1:

x, log Pet |4 x, log Peer o &+ V4 log& + ...
Dx Pr Dx
Dk
+ y, log + ... < log pryy -
Pr—r+1

On en déduit: card E), < N; N,, avec N; = nombre de solutions de
I’'inéquation &; (i=1, 2):

Pr+r
(&) x,log P + ... + x,log AL <log pi+y
D D
p p
(&) yilog™ + ... +ylog—"— + ... <log pesy -
Dy Pr—r+1

Soit R le plus grand nombre r tel que p; ., < 2p;. On coupe 'inéquation
&, en deux:

R
% Pi+r
St Z x,log < log pr+1 s
r=1 Pk

0

” pk r
SE Z x, log L log pi+1 -
r=R+1 Dr

Le nombre de variables de &, est en fait fini, et majoré par py pr+ 1. Le

nombre de variables non nulles d’une solution de &; est majoré par
1

— log p.+ 1. Le nombre N; de solutions de &; est majoré par:
0og
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1
” DPx Pk+1 1 fog 3 °F Pk+1
N < Z . < 1 log pr+1 (Pi Pr+1)
H J og 2
= log pp4 1

ce qui assure:
% Ni = exp ((Olog pp?) .
Tl résulte de I'inégalité de Brun-Titchmarsh (cf. [Hal 1] et [Mon]):
, n(x) —n(x—y) <2y/logy
~valable pour 1 < y <x que, pour k > 2:
k r r
Dr+r — Pr > ‘ilog (Pk+r— D) > *2‘108 2r .
On en déduit que pour ¥ < R, on a:
log Drtr o Pear — Do Tlog2r

og—- > = > -
P Pr+r 4py Pr

Toute solution de &', est donc solution de I'inéquation:

1
XiPy + X202 + oo FXP < ;Pk log py+1

et d’aprés le lemme précédent, on a:

log N’1 = 0(\/Pk)

et le nombre de solutions de &, vérifie:

log N, = 0(/py) -

On démontre de méme que le nombre N, de solutions de &, vérifie:

—
| log N, = O(ypo) -
- Ce qui entraine:

| log(card E')) <log N, +log N, = O(\/};k)
. et:

card E;, < p4q (card E') = exp (O (\/Ec)) :

Finalement, l’ensemble des nombres w-largement composés est

0

x U E,; la quantit¢é Q,(X) de tels nombres < X vérifie, en posant

Ay, < X < A4y, 41, ce qui entraine log X ~ p, :

g




10 P. ERDOS ET J.-L. NICOLAS

ko - — —
& X < ¥ exp (0(/p0) < koexp (0(/p) < exp (c2/log X).

Remarque. On peut conjecturer que log Q; (X) ~ =« \/ _i. \/ log X. En

effet s1 'on calcule la constante ¢, dans la majoration ci-dessus, on trouve

2
c, =2m \/ 3 (1+¢), le «2» venant de la formule de Brun-Titchmarsh.

Si I'on suppose les nombres premiers trés bien répartis autour de p,, on

Pr+r, 108 Driq
ayr———

Dk Pk
le nombre de solutions de I’inéquation

peut assimiler log et le nombre d’éléments de E’, serait

o0 o 6] (e 0] e 0]
Y rx,+ Yy  ry,<p. avec )y @ x; = o
r=1 i=1 i=1

r=1

x;, ¥;€{0, 1}. Le logarithme de ce nombre de solutions est équivalent a
[
NEN

§ 2. DEMONSTRATION DU THEOREME 2

clog x
Minoration : Posons k = | ——2° | + 1 et A, =P =2.3. p.
loglog x
oll 6 (x) = ) logp est la fonction de Chebichev. Les multiples n de 4,
p=x
. clog x X . e :
vérifient w(n) > —————. Il y en a | — | qui sont inférieurs & x. On a (cf.
loglog x A,

[Land], § 57):
log 4, = 0(p) = pi + O(pflog®p) = k(log k+loglogk—1+4o0 (1)) -

Il vient en posant / = log x, /, = log log x, I; = log log log x:

)
k=210
I,
log 4, = cl + c(logc—1) (140 (1) I/I,
et
X

t-e 11 L4 o(1)) 08%
> | 1] em (caona trom) f2E ).
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