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By Cartier duality, it is equivalent to show that both Horn (Z/pZ, Z/pZ) and

Ext1 (Z/pZ, Z/pZ) have order p, and this is obvious (resolve the "first" Z/pZ by

0 Z ^ Z Z/pZ - 0).

For another proof in this case, cf. Oort, [10], 85.

IV. Absolute Finiteness theorems

Theorem 3. Let (9 be the ring of integers in a finite extension K of Q.

Let X be a smooth (9-scheme of finite type whose geometric generic fibre

X <S> K is connected, and which maps surjectively to Spec (0) (i.e. for every
(9

prime p of (9, the fibre over p, X (g) (0/p), is non empty). Then the group
(9

n1 (X)ab is finite.

Proof. This follows immediately from Theorem 1 and global classfield

theory, according to which n1 (Spec ((9))ab, the galois group of the maximal
unramified abelian extension of K, is finite. QED

Theorem 4. Let (9 be the ring of integers in a finite extension K of
Q, Pi,..., p„ a finite set of primes of (9, N — px pn the product of their
residue characteristics, and (9 [1/Pi p„] the ring of "integers outside

Pi,..., p„" in K. Let X be a smooth (9 [1/Pi pj-scheme of finite type,

whose geometric generic fibre X ® K is connected, and which maps surjectively
(9

to Spec (O [l/'p, p„]) i.e. for every prime p i {p1;..., p„}, the fibre

X ® (0/p)

is non-empty Then the group Kl (X)ab is the product ofafinite group and a pro-
N group.

Proof. Again an immediate consequence ofTheorem 1 and global classfield
theory, according to which (Spec ((9 [1/Pi pj))ab, the galois group of the
maximal abelian, unramified outside {px,..., p„}-extension of K is finite times
pro-N. QED
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Theorem 5. Let S be a normal, connected noetherian scheme, whose

function field K is absolutely finitely generated. Let f: X -> S be a smooth

surjective morphism offinite type whose geometric generic fibre is connected, and
e

which admits a cross-section X -> S. Then there are onlyfinitely many connected

finite etale X-schemes Y/X which are galois over X with abelian galois

group of order prime to char (K) and which are completely decomposed over the

marked section. If in addition we suppose X/S proper, we can drop the proviso

"of order prime to char (K)".

Proof. This is just the concatenation of Theorems 1 and 2 with the physical
interpretation (1.3) of the group Ker (X/S) in the presence of a section. QED

V. Application to /-adic representations

Let / be a prime number, Qt an algebraic closure of Q,. By an /-adic

representation p of a topological group n, we mean a finite-dimensional
continuous representation

p: k -> GL (n, Qt)

whose image lies in GL (n, Ex) for some finite extension Ex of Qz.

Theorem 6. (cf. Grothendieck, via [2], 1.3). Let K be an absolutely

finitely generated field, X/K a smooth, geometrically connected K-scheme of

finite type, x a geometric point of X ® K, x the image geometric point of x
in X. Let I be a prime number, and p an l-adic representation of n1 (X, x);

p:nl(X, x) -> GL(n, Qi).

Let G be the Zariski closure of the image1 p (7^ (X ® K,x)) of the geometric

fundamental group n1 (X (g) K, x) in GL(n, Q,) and G° its identity

component. Suppose that either I is different from the characteristic p of K,
or that X/K is proper. Then:

(1) the radical of G° is unipotent, or equivalently :

(2) if the restriction of p to the geometric fundamental group n1 (X 0 K, x) is

completely reducible, then the algebraic group G° is semi-simple.
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