

Zeitschrift:	L'Enseignement Mathématique
Herausgeber:	Commission Internationale de l'Enseignement Mathématique
Band:	27 (1981)
Heft:	1-2: L'ENSEIGNEMENT MATHÉMATIQUE
Artikel:	FINITENESS THEOREMS IN GEOMETRIC CLASSFIELD THEORY
Autor:	Katz, Nicholas M. / Lang, Serge
Kapitel:	III. A VARIANT
DOI:	https://doi.org/10.5169/seals-51753

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. [Mehr erfahren](#)

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. [En savoir plus](#)

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. [Find out more](#)

Download PDF: 06.01.2026

ETH-Bibliothek Zürich, E-Periodica, <https://www.e-periodica.ch>

III. A VARIANT

Let us agree to call a scheme S *accessible* if there exists an absolutely finitely generated field K for which the set $S(K)$ of K -valued points of S is non-empty. Thus for example, if K is an absolutely finitely generated field, then for any subring $R \subset K$, $\text{Spec}(R)$ is accessible (by the K -valued point $R \hookrightarrow K$); also any subring R' of the power-series ring $K[[X_1, \dots, \dots]]$ over K in any number of variables has $\text{Spec}(R')$ accessible

$$(by R' \hookrightarrow K[[X_1, \dots]] \xrightarrow{X \rightarrow 0} K).$$

On the other hand, the spectrum of a field F is accessible if and only if F is absolutely finitely generated.

THEOREM 2. *Let S be a connected, locally noetherian scheme which is accessible. Let X/S be a proper and smooth S -scheme with geometrically connected fibres. Then the group $\text{Ker}(X/S)$ is finite.*

Proof. We begin by reducing to the case when S is a finitely generated field. In view of the accessibility of S , this reduction results from the following simple lemma applied with $T = \text{Spec}(K)$.

LEMMA 4. *Let X/S be proper and smooth with geometrically connected fibres over a connected locally noetherian scheme S . Given a connected locally noetherian S -scheme T , denote by X_T/T the inverse image of X/S on T , i.e. form the cartesian diagram*

$$\begin{array}{ccc}
 & X_T = X \times_S T & \\
 X \swarrow & & \downarrow \\
 X & & T \\
 \downarrow & & \downarrow \\
 S & \swarrow & \\
 \end{array}$$

The natural map (cf. 1.5)

$$\text{Ker } (X_T/T) \rightarrow \text{Ker } (X/S)$$

is surjective.

Proof. Let t be a geometric point of T , s the image geometric point of S , and x a geometric point on the fibre X_s . The homotopy exact sequences (SGA I, Exp X, 1.4) for X/S and X_T/T sit in a commutative diagram

$$\begin{array}{ccccccc} \pi_1(X_s, x) & \longrightarrow & \pi_1(X_T, x) & \longrightarrow & \pi_1(T, t) & \longrightarrow & 0 \\ \parallel & & \downarrow & & \downarrow & & \\ \pi_1(X_s, x) & \longrightarrow & \pi_1(X, x) & \longrightarrow & \pi_1(S, s) & \longrightarrow & 0 \end{array}$$

Passing to the abelianizations yields the commutative diagram with exact rows

$$\begin{array}{ccccccc} \pi_1(X_s)^{ab} & \longrightarrow & \pi_1(X_T)^{ab} & \longrightarrow & \pi_1(T)^{ab} & \longrightarrow & 0 \\ \parallel & & \downarrow & & \downarrow & & \\ \pi_1(X_s)^{ab} & \longrightarrow & \pi_1(X)^{ab} & \longrightarrow & \pi_1(S)^{ab} & \longrightarrow & 0 \end{array}$$

whence we find

$$\begin{array}{ccc} \pi_1(X_s)^{ab} & \xrightarrow{\quad} & \text{Ker } (X_T/T) = \text{image of } \pi_1(X_s)^{ab} \text{ in } \pi_1(X_T)^{ab} \\ & \downarrow & \\ & \xrightarrow{\quad} & \text{Ker } (X/S) = \text{image of } \pi_1(X_s)^{ab} \text{ in } \pi_1(X)^{ab}. \end{array} \quad \text{QED}$$

Thus we are reduced to proving the finiteness of $\text{Ker } (X/K)$ when K is an absolutely finitely generated field, and X/K is proper, smooth, and geometrically connected. We have already proven this finiteness theorem when X/K is an abelian variety (cf. Remark (1) above). We will reduce to this case by making use of the theory of the Picard and Albanese varieties.

At the expense of replacing K by a finite extension, we may assume that X has a K -rational point x_0 . The Picard scheme $\text{Pic}_{X/K}$ is then a commutative group-scheme locally of finite type over K , which represents the functor on $\{\text{Schemes}/K\}$

$$W \rightarrow \left\{ \begin{array}{l} \text{the group of } W\text{-isomorphism classes of pairs } (\mathcal{L}, \varepsilon) \text{ consisting} \\ \text{of an invertible sheaf } \mathcal{L} \text{ on } X \times_W \underset{K}{W} \text{ together with a} \\ \text{trivialization } \varepsilon \text{ of the restriction } \mathcal{L} \text{ to } \{x_0\} \times_W \underset{K}{W} \end{array} \right.$$

The subgroup-scheme $Pic_{X/K}^\tau$ of $Pic_{X/K}$ classifies those $(\mathcal{L}, \varepsilon)$ whose underlying \mathcal{L} becomes τ -equivariant to zero when restricted to every geometric fibre of $X \times W/W$ (i.e. for each geometric point w of W , some multiple of $\mathcal{L}|_{X \times w}$ is algebraically equivalent to zero). The identity component $Pic_{X/K}^{0, \text{red}}$ of $Pic_{X/K}$ classifies those $(\mathcal{L}, \varepsilon)$ whose \mathcal{L} becomes algebraically equivalent to zero on each geometric fibre $X \times W/W$. The Picard variety $Pic_{X/K}^{0, \text{red}}$ is an abelian variety over K , and it sits in an *f.p.p.f.* short exact sequence of commutative group schemes

$$(3.1) \quad 0 \rightarrow Pic_{X/K}^{0, \text{red}} \rightarrow Pic_{X/K}^\tau \rightarrow C \rightarrow 0$$

in which the cokernel C is a finite flat group-scheme over K . This cokernel C should be thought of as the “scheme theoretic” torsion in the Neron-Severi group.

We denote by $\text{Alb}_{X/K}$ the Albanese variety of X/K , *defined* to be the dual abelian variety to the Picard variety $Pic_{X/K}^{0, \text{red}}$. We now recall the expression of $\pi_1(X \otimes \bar{K})^{ab}$ in terms of the Tate module of the Albanese, and a finite “error term” involving the Cartier dual C^\vee of C .

LEMMA 5. *Let K be a field, and X/K a proper, smooth and geometrically connected K -scheme which admits a K -rational point. Then there is a canonical short exact sequence of $\text{Gal}(\bar{K}/K)$ -modules*

$$(3.2) \quad 0 \rightarrow C^\vee(\bar{K}) \rightarrow \pi_1(X \otimes \bar{K})^{ab} \rightarrow T(\text{Alb}_{X/K}(\bar{K})) \rightarrow 0.$$

Proof. By Kummer and Artin-Schreier theory, we have for each integer $N \geq 1$ a canonical isomorphism

$$\begin{aligned} & \text{Hom}(\pi_1(X \otimes \bar{K})^{ab}, \mathbf{Z}/N\mathbf{Z}) \\ &= H_{et}^1(X \otimes \bar{K}, \mathbf{Z}/N\mathbf{Z}) \cong \text{Hom}(\mu_N, (Pic_{X/K}^\tau) \otimes \bar{K}). \end{aligned}$$

in which the last Hom is in the sense of \bar{K} -group-schemes. Applying the functor $X \mapsto \text{Hom}(\mu_N, X)$ to the short exact sequence

$$0 \rightarrow Pic_{X/K}^{0, \text{red}} \rightarrow Pic_{X/K}^\tau \rightarrow C \rightarrow 0$$

gives a short exact sequence

$$(3.3) \quad \begin{aligned} 0 &\rightarrow \text{Hom}(\mu_N, (Pic_{X/K}^{0, \text{red}}) \otimes \bar{K}) \\ &\rightarrow \text{Hom}(\mu_N, (Pic_{X/K}^\tau) \otimes \bar{K}) \rightarrow \text{Hom}(\mu_N, C \otimes \bar{K}) \rightarrow 0 \end{aligned}$$

(the final zero because over an algebraically closed field, the group $\text{Ext}^1(\mu_N, A)$ vanishes for any abelian variety A , cf. the remark at the end of this section). We now “decode” its two end terms, using Cartier-Nishi duality for the first, and Cartier duality for the last.

The first is

$$\begin{aligned}
 \text{Hom}(\mu_N, (\text{Pic}^{0, \text{red}}) \otimes \bar{K}) &= \text{Hom}(\mu_N, (\text{Pic}^{0, \text{red}})_N \otimes \bar{K}) \\
 &\quad \downarrow \text{Cartier-Nishi duality} \\
 &= \text{Hom}(\text{Alb}_{X/N})_N \otimes \bar{K}, \mathbf{Z}/N\mathbf{Z} \\
 &\quad \downarrow \text{evaluation on } \bar{K}\text{-points} \\
 &= \text{Hom}((\text{Alb}_{X/K}(\bar{K}))_N, \mathbf{Z}/N\mathbf{Z}) \\
 &\quad \downarrow \\
 &= \text{Hom}(T(\text{Alb}_{X/K}(\bar{K})), \mathbf{Z}/N\mathbf{Z}).
 \end{aligned}$$

The last is

$$\begin{aligned}
 \text{Hom}(\mu_N, C \otimes \bar{K}) &\xrightarrow[\text{Cartier duality}]{} \text{Hom}(C^\vee \otimes \bar{K}, \mathbf{Z}/N\mathbf{Z}) \\
 &\quad \downarrow \int \text{evaluation} \\
 &= \text{Hom}(C^\vee(\bar{K}), \mathbf{Z}/N\mathbf{Z})
 \end{aligned}$$

“Substituting” into the exact sequence (3.2), we find a canonical short exact sequence

$$\begin{aligned}
 (3.4) \quad 0 &\rightarrow \text{Hom}(T(\text{Alb}_{X/K}(\bar{K})), \mathbf{Z}/N\mathbf{Z}) \\
 &\rightarrow \text{Hom}(\pi_1(X \otimes \bar{K})^{ab}, \mathbf{Z}/N\mathbf{Z}) \rightarrow \text{Hom}(C^\vee(\bar{K}), \mathbf{Z}/N\mathbf{Z}) \rightarrow 0
 \end{aligned}$$

Passing to the *direct* limit as N grows multiplicatively, we obtain a canonical short exact sequence

$$\begin{aligned}
 (3.5) \quad 0 &\rightarrow \text{Hom}(T(\text{Alb}_X(\bar{K})), \mathbf{Q}/\mathbf{Z}) \\
 &\rightarrow \text{Hom}(\pi_1(X \otimes \bar{K})^{ab}, \mathbf{Q}/\mathbf{Z}) \rightarrow \text{Hom}(C^\vee(\bar{K}), \mathbf{Q}/\mathbf{Z}) \rightarrow 0.
 \end{aligned}$$

Taking its Pontryagin dual, we find the required exact sequence (3.2). QED

To complete the reduction of Theorem 2 to the case of abelian varieties, we simply notice that the exact sequence of lemma 5 yields, upon passage to coinvariants, an exact sequence

$$(3.6) \quad (C^\vee(\bar{K}))_{\text{Gal}(\bar{K}/K)} \rightarrow \text{Ker}(X/K) \rightarrow \text{Ker}(\text{Alb}_{X/K}/K) \rightarrow 0$$

whose first term, being a quotient of the finite group $C^\vee(\bar{K})$, is finite. QED

Remark. In the course of the proof of Lemma 5, we appealed to the “well-known” vanishing of $\text{Ext}^1(\mu_N, A)$ over an algebraically closed field, for an abelian variety A and any integer $N > 1$. Here is a simple proof. It is enough to prove this vanishing when N is either prime to the characteristic p of K , or, in case $p > 0$, when $N = p$.

Suppose first N prime to p . Because the ground-field is algebraically closed, we have $\mu_N \simeq \mathbf{Z}/N\mathbf{Z}$, so it is equivalent to prove the vanishing of $\text{Ext}^1(\mathbf{Z}/N\mathbf{Z}, A)$. We will prove that *this* group vanishes for every integer $N > 1$. Consider such an extension:

$$0 \rightarrow A \rightarrow E \rightarrow \mathbf{Z}/N\mathbf{Z} \rightarrow 0$$

Pass to \bar{K} -valued points

$$0 \rightarrow A(\bar{K}) \rightarrow E(\bar{K}) \rightarrow \mathbf{Z}/N\mathbf{Z} \rightarrow 0$$

and consider the endomorphism “multiplication by N ”. Because the group $A(\bar{K})$ is N -divisible, the snake lemma gives an exact sequence

$$0 \rightarrow A(\bar{K})_N \rightarrow E(\bar{K})_N \rightarrow \mathbf{Z}/N\mathbf{Z} \rightarrow 0$$

But a point in $E(\bar{K})_N$ which maps onto “1” $\in \mathbf{Z}/N\mathbf{Z}$ is precisely a splitting of our extension.

Next consider the case $N = p = \text{char}(K)$. We give a proof due to Barry Mazur. Using the *f.p.p.f.* exact sequence

$$0 \rightarrow A_p \rightarrow A \rightarrow A \rightarrow 0.$$

to compute $\text{Ext}(\mu_p, -)$, we obtain a short exact sequence

$$0 \rightarrow \text{Hom}(\mu_p, A) \rightarrow \text{Ext}^1(\mu_p, A_p) \rightarrow \text{Ext}^1(\mu_p, A) \rightarrow 0$$

To prove that $\text{Ext}^1(\mu_p, A) = 0$, we will show that the groups $\text{Hom}(\mu_p, A)$ and $\text{Ext}^1(\mu_p, A_p)$ are both finite, of the same order. Trivially, we have $\text{Hom}(\mu_p, A) = \text{Hom}(\mu_p, A_p)$. Because we are over an algebraically closed field, and A_p is killed by p , its toroidal biconnected-étale decomposition looks like

$$A_p \simeq (\mu_p)^a \times (\text{biconnected}) \times (\mathbf{Z}/p\mathbf{Z})^b; \quad [\text{in fact } a = b].$$

Only the μp 's in A_p can “interact” with μ_p . Thus we are reduced to showing that $\text{Hom}(\mu_p, (\mu_p)^a)$ and $\text{Ext}^1(\mu_p, (\mu_p)^a)$ are both finite of the same cardinality p^a .

By Cartier duality, it is equivalent to show that both $\text{Hom}(\mathbf{Z}/p\mathbf{Z}, \mathbf{Z}/p\mathbf{Z})$ and $\text{Ext}^1(\mathbf{Z}/p\mathbf{Z}, \mathbf{Z}/p\mathbf{Z})$ have order p , and this is obvious (resolve the “first” $\mathbf{Z}/p\mathbf{Z}$ by

$$0 \rightarrow \mathbf{Z} \xrightarrow{p} \mathbf{Z} \rightarrow \mathbf{Z}/p\mathbf{Z} \rightarrow 0.$$

For another proof in this case, cf. Oort, [10], 85.

IV. ABSOLUTE FINITENESS THEOREMS

THEOREM 3. *Let \mathcal{O} be the ring of integers in a finite extension K of \mathbf{Q} . Let X be a smooth \mathcal{O} -scheme of finite type whose geometric generic fibre $X \otimes \overline{K}$ is connected, and which maps surjectively to $\text{Spec}(\mathcal{O})$ (i.e. for every prime \mathfrak{p} of \mathcal{O} , the fibre over \mathfrak{p} , $X \otimes_{\mathcal{O}} (\mathcal{O}/\mathfrak{p})$, is non empty). Then the group $\pi_1(X)^{ab}$ is finite.*

Proof. This follows immediately from Theorem 1 and global classfield theory, according to which $\pi_1(\text{Spec}(\mathcal{O}))^{ab}$, the galois group of the maximal unramified abelian extension of K , is finite. QED

THEOREM 4. *Let \mathcal{O} be the ring of integers in a finite extension K of \mathbf{Q} , $\mathfrak{p}_1, \dots, \mathfrak{p}_n$ a finite set of primes of \mathcal{O} , $N = p_1 \dots p_n$ the product of their residue characteristics, and $\mathcal{O}[1/\mathfrak{p}_1 \dots \mathfrak{p}_n]$ the ring of “integers outside $\mathfrak{p}_1, \dots, \mathfrak{p}_n$ ” in K . Let X be a smooth $\mathcal{O}[1/\mathfrak{p}_1 \dots \mathfrak{p}_n]$ -scheme of finite type, whose geometric generic fibre $X \otimes \overline{K}$ is connected, and which maps surjectively to $\text{Spec}(\mathcal{O}[1/\mathfrak{p}_1 \dots \mathfrak{p}_n])$ (i.e. for every prime $\mathfrak{p} \notin \{\mathfrak{p}_1, \dots, \mathfrak{p}_n\}$, the fibre*

$$X \otimes (\mathcal{O}/\mathfrak{p})$$

is non-empty). Then the group $\pi_1(X)^{ab}$ is the product of a finite group and a pro- N group.

Proof. Again an immediate consequence of Theorem 1 and global classfield theory, according to which $\pi_1(\text{Spec}(\mathcal{O}[1/\mathfrak{p}_1 \dots \mathfrak{p}_n]))^{ab}$, the galois group of the maximal abelian, unramified outside $\{\mathfrak{p}_1, \dots, \mathfrak{p}_n\}$ -extension of K is finite times pro- N . QED