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288 N. M. KATZ AND S. LANG

II. PRELIMINARIES

Let S be a connected, locally noetherian scheme, and s a geometric point of S
(1e., sis a point of S with values in an algebraically closed field). The fundamental
group 7, (S, s)in the sense of SGA 11is a profinite group which classifies the finite
- etale coverings of S. Given two geometric points s; and s, each choice of
“chemin” ¢ (s, s,) from s, to s, determines an isomorphism

c(sy, $2): 1y (S, 51) 31y (S,s,)

and formation of this isomorphism is compatible with composition of chemins. If
we fix s; and s, but vary the chemin, this isomorphism will (only) change by an
inner automorphism of, say, n; (S, s,).

Therefore the abelianization of w, (S, s) (in the category of profinite groups) is
canonically independant of the auxiliary choice of base point; we will denote it
n, (S)®. This profinite abelian group classifies (fppf) torsors over S with
(variable) finite abelian structure group, i.e. for any finite abelian group G we
have a canonical isomorphism

(1.1) Hom,, (1, (S)®, G) = HY (S, G) .

The total space of the G-torsor T/S is connected if and only if its classifying map
n, (S)** — G is surjective.

Given amorphism f: X — Sbetween connected locally noetherian schemes,
a geometric point x of X and its image s = f(x) in S, there is an induced
homomorphism

my (X, x) = 1y (S, s)
of fundamental groups. The induced homomorphism
y (X)* - my (S)*

is independent of the choice of geometric point x; indeed for any finite abelian
group G the transposed map

Hom (n; (S)*®, G) » Hom (rn, (X)*, G)
is naturally identified with the map “inverse image of G-torsors”
X HL(S;6) > Hi (X5 6).

We will denote by Ker (X/S) the kernel of the map of n{®’s. Thus we have a
tautological exact sequence

s T
=S e )
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(1.2) 0 — Ker (X/S) = nt, (X)® — n, (5.
When X/S has a section |
X
f ) €
S

| thereisa simple interpretation of Ker (X/S); it classifies those torsors on X with
finite abelian structure group whose inverse image via ¢ is trivial on S, i.e. whose
restriction to the section, viewed as a subscheme of X, is completely decomposed.
¢ There is a natural product decomposition

' (1.3) n, (X)® ~ n, (S)® x Ker (X/S)

J corresponding to the expression of a G-torsor on X as the “sum” of a G-torsor on
| X whose restriction to € is completely decomposed and the inverse image by f of
| a G-torsor on S. In particular, given, a G-torsor T/X whose restriction to € is
. completely decomposed, T is connected if and only if its classifying map
Ker (X/S) — G is surjective. In the absence of a section, there seems to be no
. simple physical interpretation of Ker (X/5S).

There are two elementary functorialities. it is convenient to formulate
| explicitly. Consider a commutative diagram of morphisms of connected, locally
| noetherian schemes

X

Y
/T
S

Proceeding down to the left, we have an exact sequence

ne 0 - Ker (Y/X) - Ker (Y/S) - Ker (X/S) .
” Proceeding across, we have an induced map
(1.5) Ker (Y/T) — Ker (X/S)

- which sits in a commutative diagram
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0 — Ker(YT).— n,(Y)® — (1)

l l l
0 — Ker(X/S) — m, (X)® — m,(S)™.

Let X be a geometrically connected noetherian scheme over a field K, (i.e. i
X ® K 1s connected, where K denotes an algebraic closure of K). Let X be a |
geometric point of X ® K, xits image in X, and s its image in Spec (K) = S.
The fundamental exact sequence (SGA I, IX, 6.1)
(1.6) 0 m (X ®K, %) =7, (X, %) > 7, (S,5) > 0
yields, upon abelianization, an exact sequence
(1.7) 1 (X @ K)* - 1y (X) - m ()™ - 0

The exact sequence (1.6) allows us to define an action “modulo inner
automorphism” of n; (S,s) on n, (X ® E, X) (given an element o € m, (S, s),
choose G € 1, (X, x) lying over it and conjugate ©, (X ® E, x) by this &). The |
induced action of m, (S, s) on m; (X ® f(—)"” is therefore well-defined. (This same |
action is well-defined, and trivial, on m, (X))

Therefore the map 7, (X ® K)® — r, (X)* factors through the coinvariants

of the action of &, (S, s) on m, (X ® E)“b: we have an exact sequence
(1.8) (T2 (X ® K)®)y, 5,9 = T (X) = 7, () > 0.

If we identify m, (S, s)for S = Spec (K) with the galois group Gal (E/K), (which
we may do canonically (only) up to an inner automorphism), then this last exact
sequence may be rewritten

(19) () (X ® K)o iy = ™ (X)™ — Gal (K/K)™ - 0.

Consider the special case in which X has a K-rational point x, ; if we choose

for X the geometric point “x, viewed as having values in the overfield K of K |
then the morphism x,: Spec (K) — X which “is” x, gives a splitting of the exact
sequence (1.6)

Xo
— e.-—-——\
(1.10) 0>, (X®K,x) »>n, (X, x) > ny;(S,5) >0

so that we have a semi-direct product decomposition

(1.11) n (X, %)~ (X ®K, x) x Gal (K/K).
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“Physically”, the action of Gal (—IZ/K) onm; (X ® K, x) is simply induced by the
action of Gal (E/K) on the coefficients of the defining equations of finite etale
| coverings of X ® K ; this action is well defined on n, (X ® K, x) precisely

because xis a K -valued point which is fixed by Gal (E/ K); if x were not fixed, an
element o € Gal would “only” define an isomorphism

LXRK DS 1, (XQK,o(0).

The semi-direct product decomposition (1.11) yields, upon abelianization, a
i product decomposition

(1.12) my (X)% 3 (my (X ® K )®)gar g X Gal (K/K)®;

'. in other words, the existence of a K-rational point on X assures that the right
exact sequence (1.9) is actually a split short exact sequence

— —
0— ((TH X® K)ab)Gal (K/ky = Ty (X)ab — Gal (K/K)ab - 0.

For ease of later reference, we explicitly formulate the following lemma.

LEMMA 1. Let X be a geometrically connected noetherian scheme over a

field K. Then Ker (X/K) is the image of m, (X ® —IZ)‘”’ in m, (X)®. The
natural surjective homomorphism

1, (X ® K)* > Ker (X/K)
factors through a surjection
(1.14) (71 (X ® K)™)ga g/ > Ker (X/K)

which is an isomorphism if X has a K-rational point. Given any algebraic
extension L/K, the natural map

(1.15) . Ker (X® L/L) - Ker (X/K)
K
IS surjective.
Proof. The only new assertion is the surjectivity of (1.15), and this follows

immediately from the surjectivity of the indicated maps in the commutative
diagram




3
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(my (X @ K)*)ga gy — Ker (X ®L/L) o m (XL
3 K

L (X @ Ky

(751 (X® E)ab)Gal &Kx > Ker(X/K) o n, (X).

Now consider a normal, connected locally noetherian scheme S with generic

point 1 and function field K. We fix an algebraic closure K of K, and denote by 7
the corresponding geometric point of S. The fundamental group =, (S, 7)) is then

a quotient of the Galois group Gal (E/K); the functor “fibre over n”

{connected finite etale coverings of S} — {finite separable extensions L/K}

1s fully faithful, with image those finite separable extensions L/K for which the
normalization of S in L is finite etale over S.

LEMMA 2. Let S be normal, connected and locally noetherian, with generic
point m and function field K. Let f:X — S be a smooth surjective
morphism of finite type, whose geometric generic fibre X; is connected. Then

(1) X is normal and connected.

(2) For any geometric point X in X withimage x in X and s in S, the
sequence
Ty (Xfp )E) -y (Xa X) - Ty (S’ S) -0
1S exact.

(3) Ker (X/S) is the image of m, (X5)™ in m, (X)™.

(4) The natural map
Ker (X,/K) — Ker (X/S)
IS surjective.

Proof. (1) Because X is smooth over a normal scheme, it is itself normal
(SGALI Exp II, 3.1). To see that X is connected, we argue as follows. The map f,
being flat (because smooth) and of finite type over a locally noetherian scheme, is
open (SGAI, Exp IV, 6.6). Therefore any nonvoid open set U = X meets X
(because f (U)is open and non-empty in S, so contains mn). But X, is connected
(because X ; is!) and therefore the intersection of any two-non-empty open sets in
X meets X .
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(2) Because X is normal and connected, it has a generic point £ and a
function field F, and its function field F is none other than the function field of X
‘(itself normal (because smooth over K) and connected). Therefore the natural

map

(X5 &) = my (X, E)

must be surjective, because it sits in the commutative diagram
T, (X, 8)
Gal (F/F)
n, (X, E)

Comparing our putative exact sequence with its analogue for X, /K, we have a
commutative diagram -

0 — m,(Xp% — m (X,x) — Gal(K/K) — 0
I ¢ {

m(XpX) —> 1, X,x) —> w5 — 0

whose top row is exact. Therefore B is surjective, and B o o = 0. To show the
exactness, given the surjectivity of B, we must show (cf. SGA I, Exp V, 6.6) that
any connected etale covering Y of X which admits a section over X; is
isomorphic to the inverse image of a connected etale covering of S. Given such Y,
its restriction Y, to X is still connected ; so the existence of a section over X ; and
the exactness of (1.6) imply that Y, is the normalization of X, in a constant-field
extension F - L, where L is a finite separable extension of K. Therefore the
function field of Y 1s F - L, whence Y is the normalization of X in F - L. Let S’
denote the normalization of S in L. Then §' is finite over S. We will show that S’ is
finite etale over S, and that Y is the inverse image over X of this covering. By (1)

applied to X x §'/S’, the scheme X x §’is normal and connected, and finite
S S

over X. Therefore X x §’isjust the normalization of X in its function field, i.e.in
s

F - L. Therefore Y = X x S’ It remains only to see that §’/S is finite etale. But
S _

this follows by fpgc descent from that factthat Y = X x §’isfinite etale over X.
S

(3) This follows immediately from the exact sequence established in (2), by
abelianization.
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(4) This follows immediately from (3), and the commutativity of the diagram
of maps induced by the obvious inclusions

Ty (Xq)ab — Ty (Xn)ab

\

T, (X)ab !

LEMMA 3. Let X be a smooth geometrically connected variety of finite
type over a field K, and let U < X be any non-empty open set. Then the
natural map

Ker (U/K) — Ker (X/K)
IS surjective. '

Proof. The variety X ® K is normal and connected, as is the non-empty
open U ® K in it. Therefore the natural map =, (U ®E) -1, (X® E) is
surjective (because both source and target are quotients of the galois group of
their common function field). The result now follows from the indicated
surjectivities in the commutative diagram

" n, (U®K)® — Ker (U/K)

v o
m (X ® K)® — Ker (X/K).

II. THE MAIN THEOREM

Recall that a field K is said to be absolutely finitely generated if it is a finitely
generated extension of its prime field, i.e. of Q or of F,,.

THEOREM 1. Let S be a normal, connected, locally noetherian scheme,
whose function field K is an absolutely finitely generated field. Let f:X
— S be a smooth surjective morphism of finite type, whose geometric generic
fibre is connected. Then the group Ker (X/S) is finiteif K has characteristic
zero, and it is the product of a finite group with a pro-p group in case K has
characteristic p.
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