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APPLICATION OF TOPOLOGY TO
PROBLEMS ON SUMS OF SQUARES

by Z. D. Dar, T. Y. Lam 1) and R. J. MILGRAM 1)

d Ifn = 1,2, 4 or 8, the classical n-square identities imply that the product of
two sums of n squares in any commutative ring 4 is also a sum of n squares in 4.
: On the other hand, by a classical theorem of Hurwitz [L, p. 137], one knows that
f the same statement cannot hold for other natural numbers n.

¥ One can study the same problem over fields instead of over commutative

b rings. Here, the solution of the problem is also known, albeit somewhat different.

According to a remarkable theorem of Pfister [P],ifn = 2™is any 2-power, and

if u, v are sums of n squares in a field F, then their product uv is also a sum of n

T squares in F. (This implies that the set of nonzero elements in F which are a sum

f of n = 2™ squares in F is a group under multiplication.) On the other hand,

Pfister has also shown that the above statement cannot hold for all fields if n is

§ not of the form 2™

Back to sums of squares in commutative rings again, the above two
J paragraphs suggest that, in considering the multiplication pfoblem, it is perhaps
ﬁ more reasonable to confine one’s attention to units of a ring A which are sums of
2™ squares in A. Writing n = 2™ and U (A4) for the group of units in A4, one can
, ask:

) If u,veU(A) aresumsof n squaresin A,
b/ *

is uve U (A) also a sumof n squaresin A?

‘; This is equivalent to asking if the set of units in A which are a sum of n = 2™
squares in A is a group under multiplication. This problem, first raised by R.
§ Bacza, appeared as “Question 12” in Knebusch’s collection [K,] of open
* problems in the Proceedings of the Quadratic Form Conference in Kingston,
¥ Ontario in 1976. Generalizing the work of Pfister, Knebusch [K,] has shown
that () has an affirmative answer in case A4 is a (commutative) semilocal ring.

b ) Supported in part by NSF.
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In this note, we shall furnish the following solution to Baeza’s problem:

THEOREM 1. The answer to (x) is affirmative (for all commutative rings A)
iff n=1,24 or 8.

In view of the classical square identities mentioned before, we need only show
the “only if” part of the theorem. The idea of the proofis to apply (%) in a “generic”
setting, and then use suitable topological machinery to derive the conclusion n
= 1,2, 4 or 8. The topological result needed here is Adams’ famous theorem
[A,] on the nonexistence of Hopf invariant one. Surprisingly, this algebraic
application of Adams’ Theorem, though reasonably straightforward, seems to
have escaped the notice of both algebraists and topologists.

Let n be anatural number for which (*) holds for any commutative ring A.
We shall prove that n = 1,2,4 or 8. (In the following, we do not need to
assume n to be a power of 2 to begin with, though this would follow from
Pfister’s theorem.)

Let A be the ring obtained by localizing the polynomial ring
R [ X1, vy Xps Vi vos Yl
at the multiplicative set generated by
u=xj"+...+$c3 and v = y? + .. + y}.

Then, by (%), thé unit uv € U (A) is a sum of n squares in A, say

uv=<f1) +....+<{"3) ., fi:eR[x,y].

uv

Clearing denominators, we get a polynomial equation:

D SIS Ebll (7 S EIL) Lo

(1) 2 2
:fl(xay) ++fn(x’y) ’

Now .we make the following key observation:

LEMMA 1. Each f;(x,y) above is a “biform” in (x,y), of bidegree
(2r+1,2s+1) (ie. viewing the y's as constants, f; is a form of degree
2r + 1 in x, and, viewing the X’s as constants, f; is a form of degree

2s +1 in y).
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Proof. View each f; as a polynomial in x, and let fi; denote its

| homogeneous component of degree j in x. We may write

.fi:fi,p+fi,p+1+"'+fi,q (lélgn)

where p, g are independent of i. If g > 2r+1, a comparison of terms of x-degree
2q on the two sides of (1) shows that

fi2,q=09

1

||M=

i

and hence f; , = 0 for all i. Similarly, if p < 2r+ 1, we must have fi, = Ofor
" alli. Hence, f;is a form in x of degree 2r + 1. By symmetry, we infer that f;is also

a form in y of degree 2s+ 1. Q.ED.

Now let x, y be points on the unit sphere $* . The equation (1) above implies

that the n-tuple

(fl (X, y)’ veey fn (x’ y))

" is also a point on S"~ 1. Thus,

(X, y)H (fl (x’ y)’ ) fn (x’ y))

induces a polynomial (and hence continuous) mapping:

I Sn—l X Sn—l — Sn-—l )
Fix a base point b € " !. Then the compositions

Sn—l_ﬁsn—l X {b}‘H?Sn_l
Sn—l —>{b} X Sn—l J#SN—l

- are odd mappings, since each f; has bidegree (2r+ 1, 2s+ 1). By the theorem of
. Borsuk [B], these odd mappings from S$" ! to itself must have odd (topological)

| degrees, say, 2r' + 1 and 2s' + 1. Thus, the mapping p has “type” (2r' + 1, 25’ + 1) in
- the sense of Hopf [H,].

Now by the Hopf Construction, the map p induces 'a continuous map
c:8*" "1 - §" Let

H: 71 (8") = Z

be the Hopf invariant on the homotopy group m,,_, (§"). According to Hopf
[H,, § 6], the homotopy class [c] € m,,_, (S") has Hopf invariant

Hloc]l =+ @2r+1)(2s+1),
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which is an odd number. By Adams’ theorem [A;] on the nonexistence of Hopf
invariant one (or odd Hopf invariant), one knows that this is possible only if
n = 1,2, 4 or 8. This completes the proof of Theorem 1.

Adams’ original solution of the Hopf invariant one problem took 85 pages,
but there exists a proof using the powerful machinery of topological K-theory (cf.
[Ag¢l, [A;, p. 137]) which, according to M. Atiyah, “can be written on a
postcard”. Thus, our Theorem 1 does admit a “short” proof. In fact, using K-
theory, it is possible to obtain a more general version of Theorem 1. This will be
deduced from the following topological statement :

THEOREM 2. Let p:S* ' x S"~ ! - §"" ! be a continuous mapping such
that

H(=x,y) = plx, —y) = —pn(x,y)

forall xeS*' and yeS"™' (cf. [H,]). Then k < p(n), where p isthe
Hurwitz-Radon function.

-(Recall that, if n = 2***? n where n, is odd and b = 0, 1, 2 or 3, then, by
definition, p (n) = 8a+2") |

Before proving this theorem, let us first record several of its remarkable
consequences in algebra. The first one is a result on real common zeros of
biforms. |

COROLLARY 1. Let
X = (xla cees xk)a y = (yb cees yn) .

Let f;(x,y) (1<i<n) bebiformsin (x,y) ofoddbidegrees(2r;+1, 2s;+1). If
k > p(n), then the real loci of f; = 0 in the multiprojective space RP*~!
x RP""! have a common point.

Proof. If otherwise, we would have a mapping p as in Theorem 2 defined by

K (X, y) = (fl (x9 y)/g (X, y) 3 000y fn (x, y)/g (X, y))
Where g (X, y) = (Z fi (X, y)2)1/2-

COROLLARY 2. Let.
F(x,9) = F(Xq5 ey Xic5 V15 vos V)

be a biform of bidegree (d,e) where d,e are not multiples of 4, and k
> p (n). Suppose that
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F(x,y) = 0(x,eR% y,eR) = x, =0 or y, = 0.
Then F cannot be a sum of n squares in R [x, y].

Proof. This is clear from the above Corollary and the argument given in

i Lemma 1.
: The next corollary may be viewed as a nonlinear generalization of the

classical Hurwitz-Radon Theorem [L, p. 137]:
COROLLARY 3. For

X = (Xg5 e Xihy ¥ = (V15 5 V)

| and fixed integers r,s = 0, the following statements are equivalent :

() AP 4 YT isasumof n squares in R [x, y];
ff Q) (.. +xH)HL (2 4.4yt isasumof n squares in Z([x, y];
3) k< p(n).

1 Proof. (2) = (1) is obvious.

(1) = (3) follows from Corollary 2.

© (3) = (2): It is enough to prove (2) for r = s = 0. This follows from [G,] or
[G.]. |

For a commutative ring A4, let S,, (4) denote the set of sums of m squares in A,
| and let US,, (4) = U (4) N S, (A4).

COROLLARY 4. For fixed integers k and n, the following statements are
equivalent:
(1) For any commutative R-algebra A, US,(A)-US, (A) < US, (4);
(2) For any commutative ring A, S, (A)-S,(4) € S, (4);
3) k< p(n)
Proof. Thisis clear from Corollary 3 and the localization argument we have

given before. (Note that Theorem 1 is a special case of this Corollary since it is
well-known that n < p(n) iff n = 1,2,4 or 8))

: We shall now begin the proof of Theorem 2, using tools from K-theory,
| especially Adams’ work on the J-homomorphism. For any finite CW-complex
§ X, let KO (X) denote the K-group of virtual real vector bundles over X, and
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k\O/(X) the reduced K-group (modulo trivial bundles). Let J (X) denote the
group of stable fiber homotopy equivalence classes of virtual sphere bundles over
X, and J (X) the reduced J-group. The canomcal J-homomorphism J: KO (X)
— J (X) induces a homomorphlsm J:KO (X) » J (X). We shall use Adams’
results in the following form (see [A,, (7.4)], [A,4, (3.5)] and [As]):

ApaMS THEOREM. For X = RP™, J is an isomorphism /IENO/(X)
= J(X). The group E(X) is cyclic of order 2°"™ where ¢ (m) is the
number of positive integers < m which are congruentto 0,1,2 or 4 (mod 8).
A generator for ﬁ(X) is given by the canonical line bundle &,, over RP™.

On the product ¥~ ! x $"! we have an involution defined by
T(xa y) = (—x’ _y)a

let E be the quotient space S*~1 x $"~!/T. We have an (n— 1)-sphere bundle
n: E - RP*™!:thisis the associated sphere bundle of the Whitney sumn - &, _ .
Note that E has an involution t(x, y) = (x, —y) which on each fiber is the

antipodal map.
Assume that we have a continuous map

I Sk—l X Sn~1 —->S"_1:

as in Theorem 2. Then p induces a map E: E — S" ! which is equivariant with
respect to the involution t on E and the antipodal map on §”~*. We have a fiber
map ‘

(M, pn): E—> RP*"! x §"~' (trivial bundle over RP*~ 1)

which (by the theorem of Borsuk again) has odd degree d on each fiber. By the
“mod d-Dold Theorem” [A,, (1.1)], there exists an integer e > 0 such that d° -

is fiber homotopy equivalent to a trivial bundle. Since J (RP*~1) is 2- pr1mary,

this implies that 1 = 0 in J (RP*~!). Pulling back to KO (RP*~ 1), we have

n-g_, = 0in KO (RP*~1), s0 by Adams’ Theorem, nis divisible by 2¢ ¢~ 1. Let

n = 2%%y wheren,isoddandb = 0,1,20r3.Ifk > p(n) = 8a + 2 then

dk—1)=d@Ba+2") =4a+b + 1,

contradicting 2® ®*~ 1 | n. Therefore, we have k < p (n) as desired.

In a recent communication to us, I. M. James has suggested a‘similar proof of
Theorem 2. He points out that a more general discussion of similar structures
from which Theorem 2 follows may be found in [W] and in [J, Sec. 7].
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