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SUR LA FONCTION:
NOMBRE DE FACTEURS PREMIERS DE N

par Paul ErRDOs et Jean-Louis NICOLAS

 ABSTRACT. Let w (1) be the number of prime factors of n; n is said w-largely
composite if m <n = o (M) < w (n). .
The quantity Q, (X) of such numbers <X verifies e’ WeeX 0, (X)

- L e X Then we prove

clog x
card n<<x [ w(n) > _g_ — xl—c+o(l)
loglog x

~and if Q (n) is the total number of prime factors of n counted according to

) e logn
-~ multiplicity, Q (n) + Q (n+1) < oo 5 (1+0 (1))
0g

An integer n is defined w-interesting 1f

w (m) - a)(n).
m n

m>n=

A short study of these numbers is given. We prove that there exists infinitely
- many strangulation points (n,) for the function n —  (n)
~ i.e. such that: m<mn,=m—o(m) <n,—own)

and m > n, = m—aw(m) > n,—wn)

Finally, we deduce from some formula of A. Selberg the exact order of
card {n < x| w (n) > « log log x} for « > 1.

INTRODUCTION

Soit n = pil... pi* la décomposition en facteurs premiers de n. On
- définitw (n) = ket Q(n) = oy + oy + ... + 0. Les fonctions w et Q sont
- additives: une fonction f est additive si (m, n) = 1 entraine f (mn) = f (m)
~ + f(n). Hardy et Ramanujan (cf. [Har]) ont démontré en 1917 que la
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valeur moyenne de w (n) était log log n. En 1934, P. Turan donnait unei
démonstration simple de ce résultat, en prouvant: (cf. [Tur])

X

Y, (o) —loglogx)*> = O(xloglogx).

n=1

En 1939, M. Kac et P. Erdos démontraient (cf. [Kac]):

1
lim - card {n <x;0{) <loglogx + t,/loglog x}

coe X
t
o= I__I e 2 gy,
\/27Z — 00

Ensuite, P. Erdos ([Erd 1]) et L. G. Sathe ([Sat]) s’intéressaient aux
entiers n < x tels que w (n) soit de I'ordre de cloglog x. A. Selberg
([Sel 1]) donnait la « formule de Selberg »

(1 Y z°® = zF(2)x(log x)" ! + o(x (log x)Re =72)

n=x

ou pour R > 0, le O est uniforme pour | z | <R; F (z) est la fonction entiére -

1 z 1\*
FO - g 1 (1+p_1) (1_5) .

Cette formule permet d’obtenir plus simplement les résultats de Sathe.
Dans la proposition 3, nous suivrons les idées de A. Selberg pour calculer
un équivalent de:

card {n <x|w(n) > aloglogx}, w>1.

La formule (1) a été¢ étendue par H. Delange (cf. [Del 1] et [Del 2]).

Soit p, le kK™ nombre premier et posons A, = 2 -3 - ... p;. Ce nombre
A, est le plus petit entier naturel n tel que w (n) = k. On dit que n est
w-hautement composé si m < n = o (m) < o (n). La suite des nombres
w-hautement composés est la suite 4,.

A Taide du théoréme des nombres premiers, ona:log A, ~ p, ~ k log k;
on en déduit que pour tout z (cf. [Wri], ch. XVIII):

log
1+o(1
i) lo glogn( o ( ))
et que Q, (X) le nombre de nombres w-hautement composés <X vérifie:

log X

X) ~ —
2 (X) log log X
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On dit maintenant que n > 2 est w-largement composé, si 1 <m <n
= o (m) <o@). Si 4, <n < Ay, n est w-largement composé si et

1 seulement si w (n) = k. Soit Q; (X) le nombre de nombres o-largement

composés << X. Nous démontrerons le théoréme suivant:

THEOREME 1. Il existe deux constantes 0 < ¢y < ¢, telles que:

exp (c; /1og X) < Q;(X) < exp (¢, / log X) .

Nous démontrerons ensuite:

THEOREME 2. Soit ¢, 0 <c< 1. Ona:

clog x } — le=ekefl)

f.(x) = card { n<x; ol >
loglog x

Entre les résultats obtenus par la formule de Selberg et le théoréme 2,
il y a un trou & boucher, pour estimer par exemple: card {n <x [ w (n)
> (log x)*}, 0 <a< 1. Kolesnik et Straus (cf. [Kol]) ont donné une formule
asymptotique assez compliquée qui fournit partiellement une solution a ce
probléme.

Nous nous intéresserons ensuite aux valeurs extrémes de f (n) + f(n+1),
pour quelques fonctions arithmétiques f. Nous démontrerons en particulier:

THEOREME 3. On a, pour n — + o0:

log
Q) + Q(n+1) <@g(1+o(1)).

Au paragraphe IV, nous disons qu’un nombre n est w-intéressant si:

m>n=>ﬁ)—(—ni) < a)(n)
m n

Cette définition caractérise une famille de nombres n qui ont beaucoup
de facteurs premiers, en les comparant avec des nombres m plus grands
que n (contrairement a la définition des nombres hautement composés).
Nous donnons quelques propriétés de ces nombres.

Enfin, dans le dernier paragraphe, on dit qu’une fonction f a un point
d’étranglement en n, si

m<n=f(m)<f(n) et m>n=f(m)>f(n).
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Interprétation géométrique: Le graphe de f, contenu dans I'angle droit de |
sommet (n, f (n)) et de coté paralléle aux axes, s’étrangle en n. Nous
démontrerons:

THEOREME 4. La fonction n — n — w (n) a une infinité de points d’étrangle-
ment. |

Pour démontrer ce théoréme, nous construirons une infinité de points n
tels qu’il existe juste avant n, une plage de nombres ayant beaucoup de
facteurs premiers et juste aprés une plage de nombres ayant peu de facteurs
premiers.

§ 1. DEMONSTRATION DU THEOREME 1

Minoration : D’aprés le théoréme de Selberg, (cf. [Sel 2] et [Nic]) il
existe entre (1 —2¢) log X et (1 —¢) log X un nombre x tel que:

J(x)

log x

S (%)

n(x+ f(x)) —n(x) ~ log x

et n(x) —n(x—f(x) ~

pour toute fonction f(x) croissante, vérifiant f(x) > x'/°

X
jl) décroisse et tende vers O.
X

et telle que

On choisit f(x) = ¢ \/—x—log x. Soit k tel que p, < x < pi4 1. On consi-
dére la famille de nombres:

n=Ak_.,.q1...q,,, 0<7'<S

ougqy, ..., g, sont des nombres premiers distincts choisis parmipy . 1, ..., Pyt s
De tels nombres vérifient w (n) = k et il y en a 2°. De plus ils vérifient:

n < Ak (pk +s> .
Pr- s
On choisit s de fagon que p,., < x + f(x) et pp_s =>x — f (x) de telle

Jx)

log x

. On a alors:

sorte que s ~

n x + f(x)
log— < slog——— < 2¢%1 :
gAk\S gx——f(x) = c“log x




	Introduction

