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SUR LA FONCTION:
NOMBRE DE FACTEURS PREMIERS DE N

par Paul Erdös et Jean-Louis Nicolas

Abstract. Let co (n) be the number of prime factors of n ; n is said co-largely

composite if m < n => œ (m) < co (n).

The quantity Qt (A) of such numbers < X verifies el^logX < Qx (X)

< ec2ViogThen we prove

card { n < x I co (n) > — 1 x1~c+o(1)
I log log x j

and if Q (n) is the total number of prime factors of n counted according to
log w

multiplicity, Q (n) + Q (n+ 1) < (1 + o (1)).
log 2

An integer n is defined œ-interesting if
œ (m) co (n)

m > n => <
m n

A short study of these numbers is given. We prove that there exists infinitely
many strangulation points (nk) for the function n — co (ri)

i.e. such that: m < nk=> m—co (m) < nh — co (nk)

and m > nk=> m —co (m) > nk — co (nfc)

Finally, we deduce from some formula of A. Selberg the exact order of
card {n < x ] co (n) > a log log x) for a > 1.

Introduction

Soit n pai ~-Pkk décomposition en facteurs premiers de n. On
définit co (ri) k et Q (n) — a± + oc2 + + ctk. Les fonctions co et Q sont
additives: une fonction/est additive si (m, n) 1 entraine/(mn) — /(m)
+ f (n). Hardy et Ramanujan (cf. [Har]) ont démontré en 1917 que la
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valeur moyenne de co (ri) était log log n. En 1934, P. Turan donnait une
démonstration simple de ce résultat, en prouvant: (cf. [Tur])

*
Y, (co (n) - log log x)2log log x)
n= 1

En 1939, M. Kac et P. Erdös démontraient (cf. [Kac]):

1

lim - card { n < x ; co (n) < log log x + t^Jlog log x }

1 r e-"2/2 du.
^Jln J -a

Ensuite, P. Erdös ([Erd 1]) et L. G. Sathe ([Sat]) s'intéressaient aux
entiers n < x tels que co (ri) soit de l'ordre de c log log x. A. Selberg

([Sel 1]) donnait la « formule de Selberg »

(1) Yj zC°(n) ZF (z) x (log x)z_1 + o (x (log x)Re (z~2))
n^x

où pour R > 0, le O est uniforme pour | z | <i£; F (z) est la fonction entière

r(z+î) p V V

Cette formule permet d'obtenir plus simplement les résultats de Sathe.

Dans la proposition 3, nous suivrons les idées de A. Selberg pour calculer

un équivalent de :

card { n < x | co (n) > a log log x } a > 1

La formule (1) a été étendue par H. Delange (cf. [Del 1] et [Del 2]).
Soit pk le klèmc nombre premier et posons Ak 2 • 3 •... pk. Ce nombre

Ak est le plus petit entier naturel n tel que co {n) k. On dit que n est

co-hautement composé si m < n => œ (m) < co (n). La suite des nombres
co-hautement composés est la suite Ak.

A l'aide du théorème des nombres premiers, on a : log Ak ~ pk ~ k log k\
on en déduit que pour tout n (cf. [Wri], ch. XVIII) :

log 72

(O (ri) < (l+o (1))
log log n

et que Qh (X) le nombre de nombres co-hautement composés <X vérifie:

log XQhW~•log log X
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On dit maintenant que n>2 est co-largement composé, si 1 < <
=> a» (m) < m(n).SiAk<«< Ak+1, n est co-largement composé si et

seulement si co (n) k. Soit Q, X)le nombre de nombres co-largement

composés <X. Nous démontrerons le théorème suivant:

Théorème 1. Il existe deux constantes 0 < telles que :

exp (c1 y log X) < Ql (X) < exp (c2 log

Nous démontrerons ensuite:

j Théorème 2. Soit c, 0 < c < 1. On a:

1 /c(x) card { n < x ; co(n) > ——1 x1_c+o(1)
[ log log x J

Entre les résultats obtenus par la formule de Selberg et le théorème 2,
j il y a un trou à boucher, pour estimer par exemple: card {n < % | œ (n)

> (log x)a}, 0 <oc< 1. Kolesnik et Straus (cf. [Kol]) ont donné une formule
J asymptotique assez compliquée qui fournit partiellement une solution à ce

problème.
Nous nous intéresserons ensuite aux valeurs extrêmes de/(n) + f (n+1),

pour quelques fonctions arithmétiques/ Nous démontrerons en particulier:

'I Théorème 3. On a, pour n -> + oo :

log n
Q(n) + ß(u + l)<i-J-^ (l+o(l)).

j Au paragraphe IV, nous disons qu'un nombre n est co-intéressant si:

co (m) co (n)
j m > n => <
j m n

j Cette définition caractérise une famille de nombres n qui ont beaucoup

j de facteurs premiers, en les comparant avec des nombres m plus grands
| que n (contrairement à la définition des nombres hautement composés).
J Nous donnons quelques propriétés de ces nombres.
'f*

'J Enfin, dans le dernier paragraphe, on dit qu'une fonction a un point
d'étranglement en n, si

m < n=>/(m) </(n) et m > n >/(n)
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Interprétation géométrique: Le graphe de/, contenu dans l'angle droit de

sommet (n, / (ri)) et de côté parallèle aux axes, s'étrangle en n. Nous
démontrerons :

Théorème 4. La fonction n -» n — co (ri) a une infinité de points d'étranglement.

Pour démontrer ce théorème, nous construirons une infinité de points n

tels qu'il existe juste avant n, une plage de nombres ayant beaucoup de

facteurs premiers et juste après une plage de nombres ayant peu de facteurs

premiers.

§ 1. Démonstration du théorème 1

Minoration : D'après le théorème de Selberg, (cf. [Sel 2] et [Nie]) il
existe entre (1 -2e) log X et (1 -s) log X un nombre x tel que:

71 (x + f(x)) - 71 (x) ~ et 71 (x) -7ï(x- f (x)) <v
7 log X log X

pour toute fonction / (x) croissante, vérifiant f (x) > x116 et telle que

f(x) décroisse et tende vers 0.
x

On choisit f (x) c x log x. Soit k tel que pk < x < pk+On considère

la famille de nombres :

n Ak^rq1 qr, 0 < r < s

où q j,..., qr sont des nombres premiers distincts choisis parmipk+19 pk+S'
De tels nombres vérifient œ (ri) k et il y en a 2S. De plus ils vérifient:

On choisit s de façon que pk+s < x + f (x) et pk_s > x - j (x) de telle

/(*) 0sorte que s ~ On a alors :

logx

" / 1 *+/<» 2 ilog - < slog —— < log x
Ak x-f(x) ~
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