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264 S. ZUCKER

P* K¢)-invariant subspace of V, and (iv) from the fact that p* F}, = F,™ ' (resp.
p F, = F51); both assertions follow from (1.7, i) and (4.9).

The flat polarization (4.6, d) ((4.5, v) in the real case) is provided by the
admissible inner product T (1.9). Let €, denote the Weil operator of (4.8). Then

(4.11) T (v,w) = B(€yv, w) if we put Bw,w = T (€5, w).

We assert that B is G-invariant (with G acting by p on the second entry). For this,
we need only apply (1.9) to see that

BpX)v,w) + B(v,p(X)w) =0

for all Xege, v,weV. (In the real case, we are displaying the self-
contragredience of p.) That B determines a polarization now follows by
homogeneity. This completes our verification.

Note that at gx, € M,

(4.12) B (€,,0s W) (P (@€ p (@) 0, w)

(Cop(@ to,p(g) " W)

=T(p@ ‘v,ple 'w,

so the “Hodge metric” coincides with the one given in (2.8). Also, n € &" (S, V)
takes its values in #7 7 if and only if j € " (I'\G) ® H%“.

=
=7

§5. HODGE THEORY FOR H" (I"; p, V),
FROM THE VARIATION OF HODGE STRUCTURE

In this Section, we will review the general Hodge theory for locally constant
sheaves V underlying polarizable variations of Hodge structure. After that, we
will insert the construction of (4.9) into the general framework and draw special
conclusions about this case. There are both local considerations and global
results. The latter follow “automatically” only when S is compact, in which case
they are due to Deligne (see [11, §§1-2]). The global results generalize to non-

compact quotients of finite volume for G = SL(2, R)[11,§§7, 12], and hopefully
we will soon be able to handle G = SU (n, 1). We should view the compact case

as providing formal guidelines for a general theory.

[
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Let V underlie a complex polarizable variation of Hodge structure of weight
m on the compact Kéhler manifold S, as in (4.6). Let

AGI(S, HTT)

denote the space of square-summable C® forms on S of type (p, g) with values in
A" 5. Then

(5.1) Ay (S, V)= @ AiI(S, AT
ptq=n
rts=m

As a consequence of (4.5, iv) and (4.6, c), it is easy to see that the operator d
decomposes, under the splitting (5.1), into a sum of four operators, written &, 0’ V'
and V', which, in terms of the 4-fold gradation (p, q; r, s), are respectively of
degrees (1,0;0,0), (0,1;0,0), (1,0; —1,1), and (0, 1; 1, —1). We define

D, — a/ + ‘_7/
(5.2)

D=0+ V,;
the pairing of operators in (5.2) is done according to “total holomorphic” degree

p + r. We have Laplacian operators for ©" and D" as in (3.11). The following
generalized Kahler identities hold :

(5.3) ProposITION (Deligne). [1,; = 2ZD': 2D1>"

Proof. (See [11, §2]; the generalization to complex variations of Hodge
structure is direct.)

Put
(5.4) BEC = @O ABI(S, HY).
ptr=P
gt+ts=Q

In terms of this new bigrading, ©' is of bidegree (1, 0) and D" is of bidegree (0, 1).
As a consequence of (5.3), one obtains a decomposition of the harmonic forms
into harmonic components of type (P, Q):

(5.5) AtV = @& AL,
P+Q=m+n
with £ 552 = /&P in the real case. This decomposition passes to cohomology,

as in (3.18), and thus we have
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(5.6) THEOREM (Deligne). Let V underlie a complex polarizable variation of
Hodge structure of weight m on S. Then thereis, for each n, an associated
decomposition :

1, S, V)= @&  H{P
P+Q=m+n
If the variation of Hodge structure is real, then the above is a Hodge structure of
weight m + n.

In order to work effectively with these decompositions, it is best to eliminate
the C* forms, and work only on the holomorphic level through the use of
hypercohomology. Let Q5 (V) denote the holomorphic deRham complex with
values in V, with differential 0. The following was given by Deligne:

(5.7) Definition. The Hodge filtration {F"Q5(V)}on Q% (V)is given by
FOL(v) = 4@ F "

because of (4.5, iv), F"Q% (V) is a sub-complex of Q5 (V).
The successive quotients

Gry Q5 (V) = F Q5 (V)/FT 71 Q5 (V)
have terms

(5.8) GryQ5(V) = Q5@ F.""",

where 921 = FIYFI+L,
Then o7°(S,V) is a fine resolution of 23 (V), possessing a corresponding
filtration. We summarize the main consequences:

(5.9) PROPOSITION. Assume that S is compact. Then
1) The spectral sequence

Ep4 = HPY(S, Grg Q5 (V) = H"(S,Q5(V))~ H?79(S, V)

degenerates at E,.

ii) The filtration induced by {F" Q5(V)} on H"(S,V) coincides with the
Hodge filtration associated to the decomposition of (5.6 ) under Definition (4.4).

111) There is a natural. identification

H" 2 ~ H" (S, Gri Q5(V)
for P+ Q =m+ n
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Proof. The above statements are all immediate consequences of (5.6).

We now specialize to the case of a locally homogeneous variation of Hodge
structure associated to (p, V), as described in the preceding section. First, we
recall the differential operators from (3.9) and (3.10), and observe:

(5.10) PRrOPOSITION. For a locally homogeneous variation of Hodge structure,

0 =D and V =d,.

(5.11) CorOLLARY. Under the same hypothesis,
D =D +d, and D" =D"+d,.

This, when coupled with (5.3), explains (3.19).

We seem to have two different Hodge decompositions on H,, (S, V), one (5.6)
coming from the variation of Hodge structure, and one given by (3.18). The two,
in fact, are mutually compatible, for (3.14) implies that the Laplacian [], respects
the complete decomposition (5.1). Thus, we obtain in the locally homogeneous
case

(5.12) A V)= & 2B (S V),
Fis=m
and thus
(5.13) H (S, V) = & HEY"9(S, V),
i
with
(5:14) Byt (8. V) = @ HE”"9 (S V),
(5.15) H{’i)Q= o) gg:zr,)q):(r,s) (S, V).
ptr=P
gts=Q

As a consequence of (5.12), we derive

(5.16) PROPOSITION. Assume S is compact. Then for all integers k, the
spectral sequence

(EP? = HO(S, Q8 ® 9.%77) = HP* (S, Gri Q5 (V)

degenerates at E,.
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Proof.- We have the isomorphism

Hn (S, GI‘I'IE-Q‘.S-(V)) ~ Hk,n+m—k |
= @  HPorIE§, V),

p+tr=k
gt+s=n+m—k

and by the Hodge-Dolbeault isomorphism and [11, (1.10)]
(LT = [ (S, Q & {{rgk—p)
~ {neP (AP O = 0}

The E, term of the spectral sequence is equal to the cohomology of the E, term
under its differential d,. We again use [11, (1.10)] to assert that in terms of the ¢'-
harmonic forms, d, is given by V'. In other words, the E, terms are naturally
isomorphic to the cohomology groups of the complex of D”-harmonic forms
under the differential d,. Representing classes by d,-harmonic forms, we have

@ ]Eg‘q ~ {n DD"n = 0 s and aISO Dd;jrl = O} .

By (3.20), the right-hand side gives H* **™~* so the desired conclusion follows.

(5.17) COROLLARY 1. There is a natural injection
LS HY (S, 2R gar)

(5.18) COROLLARY 2 [7, p. 413]. H®"(S,V) = HOmM©O-m (S V) (Hence
also H™°(S,V) = H™ 9 tm0 (5, V), )

Proof. Let n be a harmonic (0, n)-form with values in V. Then by (3.20), we

must have
dn =0.

Since n is an anti-holomorphic form, we than have
p(X)n =0 forall Xep™.

This forces the form 7j (3.3) to take its values in ¥V <m>, proving (5.18) by the
last assertion in §4.

We also have:

(5.19) PROPOSITION. The spectral sequence

WEZ e = HP (S, #° (GriQy (V) = HP*4(S,GrEQs (V)




VARIATIONS OF HODGE STRUCTURE 269

degenerates at E, if S is compact, and
pEg 4 = H@ P Emamtina(§, V),
Proof. Let
#E = 0 (GrEQ5 (V)
C=% g1,
i =ker {Qf ® G2+ 1 > U Q G F Y
B = im (O @ %t o Q1@ 9.

Then all of the above are automorphic vector bundles associated to
' representations of K on vector spaces H{, Ci, ZI B{ respectively. As a
' consequence of Schur’s Lemma and the semi-simplicity of K-representations,
Ci~ Hi @ Bi @ Bi"*

as a representation of K. Therefore, by (2.7),

|
i

Cl~ H1D BLD B

This implies that there is an embedding

~ which 1s a quasi-isomorphism. From this, it is clear that the spectral sequence
E5 T must degenerate at E,, and moreover that H? (S, #%) gives the (g, p);
- (k —g, m+g—k) component of H?*4 (S, V).

(5.20) Remark. We also obtain from the above that
Jl (E5 % >~ ES P,
so the argument of (5.19) gives an alternate proof of (5.16).

By combining (5.19) with (5.9), we obtain

) COROLLARY. If S is compact,

dim H"(S,V) = ¥ ¥ dim H? (S, #9).

k pt+tq=n

We can generalize (5.19) to the non-compact case, if we forego the
;hypercohomology. Because a morphism of representations of K induces a
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bounded mapping between the associated locally homogeneous vector bundles, |
we can see, by reasoning similar to that used in (5.19), that
(5.22) HYpremamTamk (s, V) ~ 3Hp,) (S, #7)
(b e y? (#D: 5 = 0)
{d asabove: ¢ = dn forsome mneLE" ' (HD)}

If we make use of the full extent of (3.29), we can actually deduce the following |
generalization of (5.9):

(5.23) THEOREM. Let Y*° be a Q-invariant d,-subcomplex of A'p~ @ V |
(Q asin (1.10)), suchthat p~ A YP < YP'1 so that a sub-complex % of |}
holomorphic sub-bundles of Q% (V) is determined by Y*°. Assume also that |}

Y nd, (A p QV) =d, Y*.
Then if S is compact, there are short exact sequences
0 —» H"(S,%*), > H"(S, V) » H" (S, Q5 (V)/Z*) - 0
for all n, with +(H"(S,%")) given by the subspace of harmonic n-forms with |
values in %" "

Proof. Let FP%* be the filtration on % induced by (5.7). Consider the |

spectral sequences . .
AET T = HPTA(S, Gri@ )= H? " (S, %),

sE7S = H (S, Griy") = H *° (S, Gr}%*) .
As in (5.16), the second one degenerates at E,, with
gE% S ~ H* (S, #"Gri%" .
By assumption, #? Gr{ %* may be identified with an equivariant sub-bundle of ':
#", whence zE7 * becomes identified with a subspace of /4 -9 (?P=rm=2+n (g V) §
Thus, the mapping LED4 S HPT(S, GrEQy (V) |

is an injection. Since the spectral sequence (5.9, 1) degenerates at E, it follows that §
4E? % does likewise, and the assertions of (5.23) follow. |

(5.24) Remark. Takf: %= (FPQ5) @ V (any p) in (5.23). Then one recovers i
(3.18) and its algebraic consequences: the spectral sequence

E?% = HY(S,Q%(V)) = H?"1(S,Q5(V)) ~ HP"4(S, V)
degenerates at E;.




VARIATIONS OF HODGE STRUCTURE 271

We next analyze the terms of the Hodge decomposition, as given in (5.9, iii).

n particular, we will concern ourselves with the vanishing of some of these terms.

 Given the irreducible representation (p, V) of G, we let 1, denote the

epresentation of K on the subspace H% (4.9) of V obtained by restricting p. The
ollowing is an immediate consequence of our constructions:

(5.25) LEMMA. There is a holomorphic isomorphism

4. ~ E(I', 1) .

(5.26) COROLLARY. As holomorphic vector bundles on S, the terms of the
complex Grk Q5 (V) are

02 ® F2*"? ~ E(T, A’Ad” ®7,_,) .

‘(5.27) COROLLARY. Assume S is compact. Then for all n, H™° (S, V)
given by the space of automorphic forms

{feT (M, Q) ® A" p~ @ H3 %1 f (vx) = (A"Ad” ®1,) (£ (1, X)) f (¥)}

Proof. Combine (5.18) and (5.26) with (2.13).

Establishing the vanishing of some of the H?* ¢ is easiest if we can prove that
the complex Grk Qg (V) is acyclic, or is at least close to being so (cf. [11, §12]).
-Since the differentials in this complex are (¢-linear, we are reduced to a problem
of linear algebra. We make the following simple observation:

(5.28) LEMMA. Under the identification (5.26 ), the differentials in Gre Q5 (V)
are given by d, (3.10).

~ Aswas pointed out to me by David DeGeorge, the operator d,, when applied
toallof A*p~ @ V, gives rise to the Lie algebra cohomology H*(p*, V) for the
ZAbelian Lie algebra p™. We have the C*® isomorphism

E (T, A'Ad‘®p) = €B Gry Q5 (V) .

| Moreover we can recover each summand GrFQj (V), since the central subgroup

A (defined after (1.8)) of K acts on A? p~ ® H* 7™ k*? by the character
X-pu+i—k-pul = Xn—kn

? independent of p, and faithfully determined by k.

i




272 S. ZUCKER

Since d, commutes with the action of K (see, e.g., [10,(2.5.1.1)]), H? (p*, V) is
a representation space for K, and equals the direct sum of certain irreducibles
contained in the g-cochains (cf. the proof of (5.19)). Let of denote the
representation of K on H(p*, V) < I >. Since the construction :

11— E[, 1)

1s an exact functor, we combine the above statements to obtain

(5.29) THEOREM. The cohomology sheaves of Grk Q5 (V) are given by =~ |
Hi~E([, o ).

(5.30) Remark. Thisexplains the occurrence of Lie algebra cohomology in [8,
§10]. Also, we point out that (5.18) can be deduced from (5.29).

In order to compute the cohomology sheaves in (5.29), we will make use of a
result due to Kostant [6]. Let ) be a Cartan sub-algebra of g, which we may take
to be contained in .. Let ¥ denote the set of roots for g¢ relative to . Let ¥,
denote the set of compact roots, i.e., the roots o for which the associated }
eigenspace g, < g¢ is contained in f¢; let ‘¥, denote the set of complementary
(non-compact) roots. It is possible to choose the positive Weyl chamber in h* so
that for the set of positive complementary roots ¥, |

pt = @, -

aec¥)

Then
qg=Ffdp"

is a parabolic subalgebra of g¢, with p™ its nilpotent radical, and f; a Levi
subalgebra of q. We also define ¥*, ¥, and ¥{ in the obvious way. Then for
our set-up, the theorem of [6] states :

(5.31) TueoreM (Kostant). For a dominant integral weight A eb*, let V,
be the irreducible representation of G with highest weight A.  Then as a
representation of K,

we Wul(q)

H? (p+, Vi) = @ E,a+8)-5

where o = 15 Y, o, Eg is the representation of K with highest weight B,

aew ™t

and W, (q) denotes the subset of the Weyl group for by consisting of those
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clements w which move exactly q elements of W~ into ¥;, but no
elements of W~ into W¥{.1)

(5.32) COROLLARY. #?% is a holomorphic vector bundle with fiber isomorphic
to
Duwew,, @) Ewrrs-5 <A — kp> .

Since Eis an irreducible representation of K, the subgroup A of K acts with a
single character y,, (g, Which may be determined from the highest weight itself. In
fact, it is clear that B n (B) extends to a linear functional on h*, given by
evaluation on a uniquely determined element of 3. (This point will also be used in
the discussion of vanishing theorems at the end of this section.) Therefore, we
may rewrite the terms in the formula of (5.32) as
{ EW(A+5)—5 lf K—— ku. - n[W(A+6)—8]

E,ia+5-5 <h — kp> = ,
0 otherwise .

(5.33) Example. In the case G = SL(2,R), ¥, = @, b is one-dimensional,

and the highest weights can be identified with the non-negative integers. Let V,,
= Symm™ (C?), and let p,, be the corresponding representation of G. Then p,
~ Ad, so under the identification with integers, & = 1. Moreover, the Weyl
group decomposes as the identity element I in W, (0),and —Iin W, (1). Thus, we
obtain

H°(Grk Q5 (V) = E, <m — 2k >
'}?l (Gr‘lf‘ Q:S' (Vm)) = E—m—Z <m—2k> ’

as 0 = 2. But for SL (2, R), Z = K, and therefore

E, if n=m

E,<n> = _
{0 if n#m.

Inserting this above, we see that Grk Q% (V,,) is acyclic except for k = 0 (where
H° #0)and k=m+ 1 (where #! # 0); this yields the Shimura
isomorphism, cf. [11, (12.14)]. -

The above gives rise to an interesting approach to cohomology vanishing
theorems for real representations, like those of [8, Thms. (8.2), (12.1)]—there,
however, no realness hypothesis is imposed on the representation. The idea is

1_,) U, W (q) is a set of representatives for the Weyl group of gc modulo that of f,
consisting of those elements which keep the positive chamber for g inside the larger
positive chamber for f.
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relatively simple: if cohomology occurs in multi-degree (p, q; k, m—k), then (by
conjugation) it must also occur in multi-degree (g, p; m—k, k).

(5.34) PROPOSITION. Let A be the highest weight of the real representation
(p, V) of the group G. Then a necessary condition that H”4(S,V) # 0 is
that there exist w, e W,(p) and w,e W, (q) such that n[w,A + w,A]
= [,

Proof. By (5.32),
HPa:k=pm+p=b)(§ V) ~ HI(S, #F) = 0

unless there exists w; € W, (p) with

(5.35) niw, (A+6)—0o] = A — k.
(Note that . = n(A)and p = n (E), where E denotes the highest weight of Ad.)
Similarly, for the conjugate term
HOPh 2=k k) (S, V) o HP (S, #% 1 pq )

to be non-zero, we must also have for some w, € W, (q)

(5.36) nw, A+8)—8] = A — (m+p+q—Fk p.
Adding (5.35) and (5.36), we see that
dim H? (S, #7) = dim H? (S, #% ., 4q-) = O

‘unless there exist w, € W, (p) and w, € W, (q) such that

(537 n[w; (A+3)—38] + n[wy, (A+8)—38] = 21 — (m+p+q) p.

We use the identities

n[6—wd] =qu if weW,(q),
2L = mp
to rewrite (5.37) as
(5.38) n[w,Al+ n[w,A] =0,

or
n[wA+ w,Al = 0.
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Letl = ) pep + o Itiseasily checked that under the isomorphism h* ~ b via

the Killing form, { represents a non-zero element of 3. Thus, the condition (5.38)
can be rewritten as
<wA, (> + <wyA, 0> =0,

or
(5.39) <A,wi'l+w;'(> =0.
We are discussing real representations, for which woA = —A (by self-

contragredience) with w, denoting the (unique) element of the Weyl group which
maps ¥+ to W It suffices then to examine the sums

wl_lC—wsz_lﬁ w, e W, (p),w,e W,(q).

For instance, the assertion that H”4(I'; p, V) = 0if p + g% dim S and A lies
in the interior of the dominant cone [8, Thm. (12.1)] would follow from the
corresponding statement: w;'{ — wow; ' { is a non-zero element of the
positive dual cone for allw, € W, (p)and w, € W, (q) wheneverp + g < dim S.
This has been verified by the author in some examples, though no satisfying
argument involving root structure has been found.

Added in proof: Borel has pointed out that although there was a gap in the
proof of Theorem 4 of [13], it has been filled in by W. Casselman in the case
where the ranks of G and K are equal. This includes all Hermitian cases.
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