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254 S. ZUCKER

§3.' THE COHOMOLOGY GROuUPS H"(I"; p, V)

In this section, we will discuss the various approaches toward computing the
Eilenberg-MacLane cohomology groups H" (I'; p, V) for a finite-dimensional
representation (p, V) of G, which we may as well take to be irreducible.

We begin with the use of deRham cohomology, as carried out originally in
[7]. Since M is contractible, there is a natural isomorphism

H"(I';p, V) ~ H"(S, V)

(with notation as in §2), hence we may compute these cohomology groups from
the complex of V-valued C*® forms on S (by the deRham theorem).
We will make use of the following obvious diagram of manifolds

(3.1)

A

G SI\G
k] l
M S

Let 1 be an element of " (S, V), the space of global C® n-forms on M with
values in V. Then

¢ = k¥*r*n

is a V-valued form on G satisfying the equations

(3.2) i) v*¢ = p(v [ if yell
i) Ly = if Yef,

Zy = Lie derivative = (A"Ad*) (Y)
i) 1yp = 0 if Yet

1y = interior multiplication by Y

Conversely, every element ¢ € /" (G) ®¢ V (/" (G) denoting the space of C* n-
forms on G) that satisfies (3.2) 1s x*n*n for some n € /" (S, V) We then apply the
mapping = of (2.6) to ¢, obtaining the n-form

(3.3) A=plg Ho

which satisfies
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(3.4) ) y*n =1 if yel,
i) #n = —p(Y)A if Yef,
iii) 1, = 0 if Yet.

In particular, we may view 7} as a vector-valued form on I'\G.

We next describe the Hodge theory for H" (S, V) from this point of view, as
was done in [7] and [8]. Actually, one must work with the L, cohomology when
S is non-compact. Since we have defined a metric on A4 (I', p) in Section 2, and
on the tangent bundle by the Killing form, there is an L, norm | n ||, for
n e /" (S, V), and the L, cohomology is defined by

(3.5)

L (5.V) = mesx"(S,V): nis L, and dn = 0}
(2) (9 =

{n asabove: mn =dy forsome L, Ye" !(S,V)}

There is then an obvious mapping
(3.6) H{y (S, V) = H" (S, V),

and one is ultimately interested in understanding the kernel and image of this
mapping. (See also [12].)

(3.7) Remark. We may compute the L, cohomology groups (3.5) from the
complex of weakly differentiable L, forms £ (,,(S, V); i.e., we may drop the
smoothness condition on forms (see [ 15, §8]). Then d becomes a densely-defined
differential for the “complex” of Hilbert spaces of V-valued L, forms, and

{weakly closed V-valued n-forms}

H,, (S,V) ~ )
@& V) {range of d on L, (n— 1)-forms}

We define the reduced L, cohomology Hf,, (S, V) by replacing the range of d
in the above quotient by its Hilbert space closure ; the reduced L, cohomology
inherits a Hilbert space structure from the L, inner product.

In discussing | nj ||(,), we wish to make use of the form 7} of (3.4), and we have

(3.8) LemMma [7, p.380]. If neo"(S,V) and e " (I'\G) ® V is the
corresponding element, then

g "(22) =c|n ”(22) 5

where ¢ equals the volume of K.
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While much of what follows holds in the absence of a complex structure, we
restrict ourselves to the Hermitian symmetric case for the purposes of this
exposition. For the general case see [7].

Choose an orthonormal basis {X;}¥_., of p*, so

(X1, X1, e Xio Xi}

forms an orthonormal basis of pc. For n e &7 4(S, V), put

X;,)ed° GV .

Let
d=d + d

be the usual decomposition of the (flat) exterior derivative d on «7°(S, V) into
components of bidegree (1, 0) and (0, 1). The bidegree (1, 0) differential operators
D’ and d, are defined by the formulas

(39) (D,n)i1,...,ip+1‘,_i1,---,jq

p+1
. _1ywu—1 : .
= 21 (—1) Xy Migscoos o oo ip 4 1810 o g 2
u=

(3.10) (d T])u v ip + 13 J1s s Jq

u—1
1) Xiu) nil""’ﬁ"“’ ip+1:jl1"'7jq :

||[\/]+

One also puts D" = D' and d, = d—; Thend = D' + d,andd” = D" + d;;if
weputD = D' + D"and d, = d, + d, thend = D + d, We remark that D
gives a metric connection on ® (p); heuristically, we regard k*E (p) as being |

canonically flat.
Let D represent any of the above operators. One can obtain directly formulas

for the L, adjoint D* and the Laplacian

(3.11) Op = DD* + D*D

(see [9, pp. 68-70]). From these calculations, one obtains also the following
identities
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(3.12) PROPOSITION. As operators on Z°(S, V),

) s = O + O
) O, = Op + Ca,
) Op = Qp + Op~
iv) de = Dd;, + Dd;)'
v) O = Op + Oy

(3.13) Remark. One always has
[ =0d. +04d
(D, +D,) D, D,
so (3.12) amounts to establishing the vanishing of the expression in parentheses
on the right-hand side. The identities in (3.12) are not general formulas for flat
bundles on manifolds, but are particular to the group-theoretic context.

+ (D, D5+ D3P, + DD, +D,DY),

Since S is complete in the induced metric from M, the operators D as above
have unique [3] closed extensions to £, (S, V), so the identities (3.12) continue
to remain valid in the strict sense on L,. From this, one may conclude

(3.14) PROPOSITION. If meZ(,,(S,V), the following are equivalent :
1) Om =0 (n is harmonic),
i) O,m = Ogm = 0
i) Opm = Opn = Ogn = Oagn = 0,
iv) D = (D)*n = D'n = (D"y'n = djn
= (d)*n = dm = (d)*n = 0.
Since Oy is elliptic for any of the operators D above, harmonic forms are

necessarily C”. Let 4 {(,, (S, V) denote the space of L, harmonic n-forms with
values in V. We obtain by standard theory (see [15, §1]):

(3.15) ProrosiTION. For all n,

1) _?2) (Sa V) = /?2) (S’ V)a

i) The mapping /‘{'2) (S, V) = H}, (S, V) is injective, and is an
isomorphism if and only if d, operating on ,9,”{’2_)1 (S, V), has closed range.
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(3.16) Remark. An easy way to guarantee that the mapping in (3.15, ii) is an
isomorphism is by showing that H{,, (S, V) is finite-dimensional.

By (3.14,11) a form is harmonic if and only if it is annihilated by the
Laplacians of the bidegree-preserving operators d’ and d”. Therefore, a form is
harmonic if and only if its (p, g) components are harmonic, so

(3.17) A8, V)= @ ABIS, V).

ptg=n

Passing this through the isomorphism (3.15, i), we get

(3.18) Hy(S. V)= @& HBIS V).
. p+q=n
If we take S to be compact, we have H{,, (S, V) = H" (S, V), and in (3.18) the
Hodge decomposition of [7].
The most significant assertion about Laplacians, as we will see in Section 5
is given by

b

(3.19) ProrosITION [8, p. 14].
Llp + Oa = Op + []d;;.

This fact was not fully exploited in the earlier work.

(3.20) CoroOLLARY. m is harmonic if and only if
Llpn = Dd;,n = 0.

We close this section with a brief account of another way of viewing the
cohomology groups H" (I'; p, V), currently preferred in representation theory.
For'simplicity, we assume that S is compact, and mention at the end what
changes must be made in the non-compact case.

From the description (3.4), it is clear that we may regard an element of
/" (S,V) as a mapping from A"p. into &/°(I'\G) ® V that satisfies a
transformation rule under f. This correspondence gives an isomorphism of
H" (S, V) with the relative Lie algebra cohomology (see; e.g. [8, pp. 6-8] or [14,
Ch. I]):

(3.21) H" (3¢ fe, JZO T\G) ® V),

associated to the cochain complex
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(3.22) Hom, (A'p #° (T\G) ® V).

Here, g¢ acts on /% (I'\G) by differentiation, induced by the regular
representation of G.

(3.23) Remark. By a theorem of van Est (see [5, p. 386]), the relative Lie
algebra cohomology is in turn isomorphic to the differentiable (or even
continuous) Eilenberg-MacLane cohomology

H (G, «£° (T\G) ® V).

For this reason, (3.21) is often referred to as “continuous cohomology.”
The cohomology (3.21) decomposes according to the splitting of
#° (I'\G) ® V. First, one decomposes L, (I'\G) as a representation of G:

N
(3.24) L, T'\G) ~ @ E,
into the direct sum of irreducible unitary representations of finite multiplicity.
Then
N
(3.25) L,(T\G, V)~ & (E,QV)

Taking C*® vectors gives the decomposition

(3.26) L°(T\G) Q@ V ~ @ (EX ®V),

By a formula of Kuga (see [7, p. 385] or [14, p. 49]), in terms of the form 7, the
Laplacian is given by

(327) On =[-C+p(O]7,

where C is the Casimir element of the enveloping algebra of g. It follows that in
each summand of (3.26), there can be non-zero harmonic forms only if the
infinitesimal characters y, of (n,, E,) and x, of (p, V) agree on C. In fact, if the
space of harmonic forms is non-zero one must have x, = ¥, (see [1, (2.4)]). In
this case, every cochain with values in E, is harmonic. Thus,

(3.28) H"(S,V)

12

@ HomK (Aan’ Ea® V)

Xe = Xp

b (AP(¢QE,QV)¥ (K-invariants).

By = %y

12

From (3.27) and (3.28), one obtains the following:
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(3.29) PrOPOSITION. . Let (py, V) and (p,, V,) be two irreducible
representations of G, and supposethat p,(C) = p, (C). Then every morphism
of K-representations

GAMPFRV, > AP RV,

induces a mapping of harmonic forms
Oyi (S, V) = £ 2(S, V).

and thus a mapping ¢,:H™ (S,V,) > H™(S,V,). (If the infinitesimal
characters of (py, V) and (p,, V,) differ, then ¢, is the zero mapping.)

If we now decompose each A” p¢ ® E, ® V as a representation of K and
apply (3.29) to the projections onto each component, there is induced
decomposition of H” (S, V), much in the spirit of [2]. If we decompose only A" p*,
we obtain the decomposition (3.18). We will refine that decomposition in §5.

If S is non-compact, then L, (I'\G) is the direct sum of its discrete spectrum
L, (I'\G); and the continuous spectrum L, (I'\G),. One then has a
decomposition like (3.24) only for L, (I'\G),. From there, one obtains an
injection

(330) B (Er®V) > 45 T\G) RV,

whose image consists of those C® V-valued functions for which all left-invariant
differential operators are in L,. Borel has shown that (3.30) induces an
isomorphism on cohomology. Also, if I is an arithmetic subgroup of G, then all
harmonic forms come from L, (I'\G),. In this case, one therefore obtains, as in
(3.28), the isomorphism

(3.31) 1,5, V) ~ @ (A"PEQEQV)".
Xg = Xp

Moreover, the above sum has only finitely many non-zero terms, as the reduced
L, cohomology is finite-dimensional. Borel discovered the initially surprising
phenomenon that the (non-reduced) L, cohomology is for some groups infinite-
dimensional, with d having non-closed range on the continuous spectrum in
certain dimensions; however, this never occurs in the Hermitian case. As a
reference for this paragraph, see [13] and the references cited therein !). (See also
[12] for a different approach to the L, cohomology.)

1) See note added in proof.
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