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250 S. ZUCKER

§2. Vector bundles on T\M

Let T be a discrete subgroup of G which acts freely on the symmetric space M,
and put S T\M. We will discuss two standard constructions ofvector bundles

on S.

The first type is the quotient by T of a homogeneous vector bundle on M.
Specifically, let (x, W) be a finite-dimensional representation of K. Then £(x) is

defined as the quotient of G x W by the following identification under the

action of K :

(2.1) (g, w) ~ (gk~l, x(k)w) if ke K.

E(x) is naturally a C00 vector bundle on M, and the left action of G on M is

covered by the obvious left action of G on E(x). Thus, we may take the quotient
by any T as above to obtain a bundle E (T, x) on S. Alternatively, E (T, x) is an
associated vector bundle of the principal K-bundle T\G. Note that if (x, W)
decomposes as a represe ntation of K into

<t, W) ®| 1(x, Wd,

then one gets an induced decomposition

(2.2) E(T,x) ~ ®U£(r,x,.).
We may identify sections of E (T, x) as the T-invariant sections of JE(x), which in
turn are given by mappings cj) : G -> W which satisfy

(2.3) cj> {ygk~x) x (k) <|> (g) for all y e T, g e G, k e K

An Hermitian metric can be placed on E (T, x) by a choice of x (K)-invariant
inner product on W. (Such exist because K is compact.) The corresponding
constant metric on G x W descends to E (T, x), in view of (2.1).

(2.4) Example. Taking x Ad |pc, we have a natural isomorphism of E (x)

and the complexified tangent bundle to M, and we may take quotients by T.

The second type of vector bundle is the flat bundle associated to a finite-
dimensional representation (\j/, V) of T. We let O (\|/) denote the quotient of

M x V under the action of T :

(m, v) ~ (y m,\|/(y) v)

Sections of O (\(/) are given by functions / : M - V such that
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(2.5) / (yx) v|/ (y) / (x) if yeF, xeM.

The local sections ofO (v|/) determined by constant K-valued functions determine

a flat structure on O (i|/), whose sheaf of locally constant sections will be denoted

V.

The two constructions above are related by the elementary

(2.6) Proposition. Let (p, V) be a representation of G (which then

restricts to representations of K and T). Then the mapping

Ë: G x V -+ G x V,

defined by Ë(g,v) (g, p (g)'1 v), induces an isomorphism of C00 vector

bundles

S:<D(p|r)^£(r, Py.

(2.7) Remark. Let (p, V) be a finite-dimensional representation of G, and

(\|/, W) a finite-dimensional unitary representation of T. We note that by the

standard ruse of replacing G by G' G x U (W\ where U (W) denotes the

unitary group of W, V ® W becomes a representation space for G', and so the

bundle $ (p|r®vj/) falls into the class of bundles covered by (2.6).

A natural metric on O (p|r) is provided by the admissible inner product T

(1.9). For g e G, v,weV, let (at gx0 e M)

(2.8) <v,w>gxo T(p(g~x) v,

Since K acts isometrically with respect to T, it follows that (2.8) is well-defined on
M x V ; and it is evident that the action of T is isometric, so (2.8) descends to
® (p|r). T also determines a metric in E (r, py, and it is clear that the mapping E

of (2.6) is then an isometry of bundles.

Assume next that M is Hermitian. Then to every finite-dimensional
holomorphic representation (a, W) of Q is associated a Gc-equivariant
holomorphic vector bundle E (a) on M, constructed as in (2.1). By restricting to
M and taking the quotient by the action of T, we obtain the holomorphic vector
bundle E (r, a) on S. ß-invariant subspaces of W determine holomorphic sub-
bundles of Ë (r, a). Along the same lines as (2.6), we have :

(2.9) Proposition. Let (p, V) be a representation of G (which then determines
representations of Q and T). Then the mapping

S : Gc x V -> x V,
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defined by H (g, v) (g, p (g)
1 v\ induces an isomorphism of holomorphic

bundles

S:0(p|r)^£(r, pc|Q).

Every representation x of K determines a holomorphic representation of Kc,
which then extends to a representation aT of Q by setting aT to be trivial on P~,
since K normalizes P~. The Cœ isomorphism E (T, x) E (r, aT) imparts a

holomorphic structure to E (T, x) ; however, an isomorphism (2.2) need not be

holomorphically compatible with (2.9).

(2.10) Example. Taking x Âd+ Ad K | + we obtain a holomorphic
isomorphism

E (x) ~ 0M (holomorphic tangent bundle of M),

and we may take quotients by F. Therefore, since the Killing form gives (p+)*
~ p~ as a representation of K,

E(T, ApAd~) - Qps

(Here and elsewhere, we identify a vector bundle with its locally free sheaf of

germs of sections.)

There is a relation of the preceding to automorphic forms, coming from the

following. Let W be a finite dimensional vector space over C. Then an

automorphy factor y is a Cœ mapping

:Q x M GL(W)
which satisfies

(2.11) i) ^ (g, x) is, for fixed g, a holomorphic mapping from M into GL (W\
ü)/ (gh, x) / (g, hx)/ (h, x).

We observe thatyis then completely determined by the function/ (g, x0) on G.

Given such a /, one forms the automorphic vector bundle A (F,/ a

holomorphic bundle, by taking the quotient of M x W under the action of T :

(x, w) ~ (yx,/ (y, x) w) for all y e T, x e M, w e VF

Sections of A (r,/ are then given by functions /: M -> W such that

(2.12) / (yx) / (y, x) / (x) for all y g T, x e M ;

these are called automorphic forms.
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From an automorphy factor one obtains a representation x^ of K by

setting

T; (k) =/ (k, x0),

because of (2.11, ii). We then have

(2.13) Proposition. Let y be an automorphy factor. Then there is a Cœ

isomorphism

induced by the mapping

G x W -+ G x W

¥9,w) {g,/ (g, *0) w) •

I
'i (2.14) Remark. For a representation (p, V) of G,
t
{ / (& x) p (g)

$ defines an automorphy factor, for which (2.13) is a reformulation of (2.6).

Conversely, to the Lie group G is associated its canonical automorphy factor

/ (see [7, p. 397]), which is a C00 mapping / : G x M Kc which satisfies the

equations of (2.11); and / (g9 x0) is the Kc-component of g in G a U
P+ KCP~. Then each representation x of K determines an automorphy

factor

y, (g, x)T (/ (g, x)).

In this case, the mapping of (2.13) extends to a biholomorphic mapping of
U x W, from which it follows that

¥:£(r,
is an isomorphism of holomorphic bundles. Thus we have also, for instance,

Q.% — A(F, ^APAd~) -

In this manner, holomorphic sections of bundles E (T, x) become given as spaces
of automorphic forms. One also uses (2.13) to construct local frames for E (T, x).
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