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§1. PRELIMINARIES

Let G be a connected real semi-simple Lie group with finite center, K a
maximal compact subgroup of G, and let ¢ > f be the corresponding Lie
algebras. For any sub-algebra a = g, we put

ac=a®RC

If B denotes the Killing form of g, B is negative-definite on f, and we let p
denote the orthogonal complement under B of fin g. Then g = £ @ p is a so-
called Cartan decomposition of g, and B is positive-definite on p.

Let M = G/K, the corresponding symmetric space. As [, p] <= p, B defines
an(Ad K)-invariant inner product on p ; and since we may identify p naturally as
the tangent space to M at the identity coset x, = K, B determines a unique |
Riemannian metric on M which is invariant under the canonical left G-action.

Assume initially that M is an irreducible symmetric space. Then, if one wishes,
G can be taken to be a non-compact almost simple group (i.e., g is a simple Lie
algebra). In that case, the space M admits a homogeneous complex structure,
and becomes an Hermitian symmetric space, precisely when f has a non-trivial
center 3. In thiscase,dim 3 = 1,and Z = exp 31is theidentity component of the

center of K. Let G*¢ denote the adjoint group of G (i.e., the automorphism group

of M) and let K*J, Z*® be the corresponding subgroups of G*!. A choice of
zo € Z2¢ of order 4 (for which Ad (z3) is a Cartan involution of g) determines an
almost-complex structure on p:
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pc=p @®p°
~with
pt = {X epc:Ad(zp) X = iX}
(1.1)
{ p” = {Xepc:Ad(zg) X = —iX}

This determines, via left-translation under G, a Kdhlerian complex structure on
M, such that the action of G is by holomorphic isometries.

For purposes of numeration, we define @ = p (G) to be the degree of the
covering map Z — Z*. It has the following properties:

(1.2) 1) if G is of adjoint type, p = 1 (cf. [16, (1.17B)]),

i) if G — G is a finite covering,. then p (G) divides u (G'),
) if G = SU(n, 1), thenp = n + L

Let p be anirreducible representation of G on the finite-dimensional complex
vector space V. We will say that (p, V) is a real representation if there is a G-
invariant R-subspace Vg of V' with

V= VR®RC>

such that G acts on V by extension of scalars. Under the subgroup Z, the

representation necessarily splits into one-dimensional Z-invariant summands,
on each of which Z acts by a character. We pick an isomorphism

(1.3) d:Z~S"={weC:|w|=1}.

The character group of Z is free cyclic, with elements

Y, Z — St
given by
X (2) = [¢ (2)]".
Let
(1.4) V<n> ={veV:ip@v=1x,020v Iif zeZ},
so that
(1.5) V=8, V<n>.

Each V <n> is invariant under K. If (t, W) 1s a representation of K, then we
defin= W<n> as in (1.4);if W is irreducible, then W= W<n> for some n,




248 S. ZUCKER

1.e., Z acts by a single character. We will assume to have chosen the isomorphism
(1.3) so that Z acts on p™ by a “positive” character.

(1.6) Example. Assuming that G is almost simple, we take Vx = g, and
p = Ad, the adjoint representation of G. Then p™ = V<pu>, . = V<0>,
and p” = V< —pu>.

For an irreducible (finite-dimensional) representation of G, we also use p to
denote the induced action of g on V. Because of the above description (1.6) of Ad,
it is easy to see that the following hold:

(1.7) ) pp)V<n> cV<n+pu>,pHV<n> c V<n>,
pp)V<n> cV<n—pu>.
i) {n: V<n> #0} = (L, A — g, A — 2, ., A — mp}

for some integers A > 0,m > p~ A

1) If V is real, then for all n,

V<—n> = V<n>  (complex conjugate)

and t‘hus mu = 2A.

((1.7 i) includes, in particular, the standard fact that p™ and p~ are Abelian Lie
subalgebras of gc.)
For the general case, write

(1.8) G = (Il).,G) x H,

where each G; is almost simple and of non-compact Hermitian type, and H is
compact.') Let

Z =M., Z;;and Z* = TI,_, Z3° aproduct of circles. Let A** be the diagonal
of Z*, and A the inverse image of A*! in Z. One may proceed as before, if we

replace Z by A. Alternatively, every irreducible representation (p, V) of G
decomposes as a tensor product

(®=1 (P, V) ® (o, W)

in accordance with the product structure (1.8). It is then easy to see that under the
action of A, the decomposition (1.5) of V is the tensor product of the

1) We allow compact factors because of (2.7).
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| corresponding decompositions of each V; into character spaces under Zj
| tensored with the “trivial” factor W.

On V there exists a positive-definite Hermitian form (the admissible inner
product) T (v, w) (see [7, p. 375]), determined uniquely up to a constant multiple,
[ with the property that

§ 19 ) T(pkuvpkw) =Tww if keK
i) T(p(X)ow) = T(n,p(X)w) if Xep.

This follows from the fact that T @ ip is a compact Lie algebra. If V is real, then
_ the admissible inner product can be seen to be the Hermitian extension of a
real inner product on V4. A

7 Let I denote the intersection of the kernels of all finite-dimensional
'3 representations of G. Then [ is a central subgroup, and G/I admits the structure
B of a real (affine) algebraic group. Since we are interested in G only for its finite-
dimensional representations and the symmetric space M, we may replace G by
G/I and assume that G is an algebraic group. To get all of the representations of g,
J 1t 1s convenient in the abstract to replace G by its algebraic universal covering
group (1.e., one makes the preceding construction for the topological universal
A cover of G); thus, we may and do assume that G is algebraically simply
connected. We remark that by (1.2), the number p (G) can be arbitrarily large,
g cven under this restriction.

Let, then, G denote the set of complex points of G. It is a simply-connected
complex Lie group with Lie algebra g¢. Let K denote the connected subgroup
of G¢ with Lie algebra fc. By general theory (see [17, XVILS5]), K¢ is the uni-
versal complexification of K, and so, by definition, every representation of K
¥ cxtends to a holomorphic representation of K.

Assume that M is Hermitian, and let P (resp. P ~) denote the subgroup of G
¥ corresponding to the subalgebra p* (resp. p~) of gc. Then PTKcP™ is an open
i subset of G¢ which contains G (see [4, p. 317]). Moreover, G n K¢ P~ = K (see
[4, p. 318]), so the mapping of G — G induces a holomorphic embedding

i (110 M= M = Go/Q:
as Q = K¢ P is a parabolic subgroup of G¢, M is compact and is known as the
5‘ compact dual of M.
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