
Zeitschrift: L'Enseignement Mathématique

Herausgeber: Commission Internationale de l'Enseignement Mathématique

Band: 27 (1981)

Heft: 1-2: L'ENSEIGNEMENT MATHÉMATIQUE

Artikel: LOCALLY HOMOGENEOUS VARIATIONS OF HODGE STRUCTURE

Autor: Zucker, Steven

Kapitel: §1. Preliminaries

DOI: https://doi.org/10.5169/seals-51751

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte
an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei
den Herausgebern beziehungsweise den externen Rechteinhabern. Siehe Rechtliche Hinweise.

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les

éditeurs ou les détenteurs de droits externes. Voir Informations légales.

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. See Legal notice.

Download PDF: 20.05.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-51751
https://www.e-periodica.ch/digbib/about3?lang=de
https://www.e-periodica.ch/digbib/about3?lang=fr
https://www.e-periodica.ch/digbib/about3?lang=en


246 S. ZUCKER

TABLE OF CONTENTS

1. Preliminaries 246
2. Vector bundles on T\M 250
3. The cohomology groups Hn (F ; p, V) 254
4. The variation of Hodge structure associated to (p, V) 261
5. Hodge theory for Hn(F ; p, V), from the variation of Hodge

structure 264

References 276

§1. Preliminaries

Let G be a connected real semi-simple Lie group with finite center, K a

maximal compact subgroup of G, and let g 3 be the corresponding Lie
algebras. For any sub-algebra o c g, we put

Qc ^ ^^R f' •

If B denotes the Killing form of g, B is negative-definite on f, and we let p
denote the orthogonal complement under B of f in g. Then g f 0 p is a so-
called Cartan decomposition of g, and B is positive-definite on p.

Let M G/K, the corresponding symmetric space. As [f, p] cz p, B defines

an (Ad K)-invariant inner product on p ; and since we may identify p naturally as

the tangent space to M at the identity coset x0 K, B determines a unique
Riemannian metric on M which is invariant under the canonical left G-action.

Assume initially that M is an irreducible symmetric space. Then, if one wishes,
G can be taken to be a non-compact almost simple group (i.e., g is a simple Lie

algebra). In that case, the space M admits a homogeneous complex structure,
and becomes an Hermitian symmetric space, precisely when has a non-trivial
center 3. In this case, dim 3=1, and Z exp 3 is the identity component of the

center of K. Let Gad denote the adjoint group of G (i.e., the automorphism group
of M) and let Kad, Zad be the corresponding subgroups of Gad. A choice of
z0 e Zad of order 4 (for which Ad (z%) is a Cartan involution of g) determines an

almost-complex structure on p :
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Pc P
+ © P

with

(1.1)

p+ {Iepc: Ad (z0) X iX}

p~ {X e pc: Ad (z0) X —iX}

This determines, via left-translation under G, a Kählerian complex structure on

M, such that the action of G is by holomorphic isometries.

For purposes of numeration, we define p p (G) to be the degree of the

covering map Z Zad. It has the following properties :

(1.2) i) if G is of adjoint type, p 1 (cf. [16, (1.17B)]),

ii) if G' -+ G is a finite covering,, then p (G) divides p (G'),

iii) if G SU («, 1), then p n + 1.

Let p be an irreducible representation of G on the fmite-dimensional complex
vector space V We will say that (p, V) is a real representation if there is a G-

invariant R-subspace VR of V with

such that G acts on V by extension of scalars. Under the subgroup Z, the

representation necessarily splits into one-dimensional Z-invariant summands,
on each of which Z acts by a character. We pick an isomorphism

V WrC,

(1.3) : Z — S1 {w g C : I w I 1}

Let

(1.4) V <n>{u e V: p(z) v (z) vifz

so that

(1-5) I/= ®„sZ V<n>

Each V < n>isinvariant under K. If (t, is a representation of then we
define W <n>asin (1.4); if W is irreducible, then for some n,
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i.e., Z acts by a single character. We will assume to have chosen the isomorphism
(1.3) so that Z acts on p+ by a "positive" character.

(1.6) Example. Assuming that G is almost simple, we take VR g, and

p Ad, the adjoint representation of G. Then p+ F<p>, fc — F<0>,
and p

~ V<— p >.
For an irreducible (finite-dimensional) representation of G, we also use p to

denote the induced action of g on V Because of the above description (1.6) of Ad,
it is easy to see that the following hold :

(1.7) i) p (p+) V<n> a V<n + p>, p (t) V<n> a V<n>
p (p~)V<n> a V<n — [i>.

ii) {n: V<n> ^ 0} {X, X — p, X — 2p,..., X — mp}

for some integers X ^ 0, m ^ p~1X.

iii) If V is real, then for all n,

V<—n> V<n> (complex conjugate)

and thus rap 2X.

((1.7 i) includes, in particular, the standard fact that p+ and p~ are Abelian Lie
subalgebras of gc.)

For the general case, write

(1.8) G (nlj=1Gj) X H

where each Gj is almost simple and of non-compact Hermitian type, and H is

compact.1) Let

K (Ulj=1Kj) x H ;

Z nj 1 ZjjandZ30 Ilj.= 1 Zf, a product ofcircles. Let Aad be the diagonal
of Zad, and A the inverse image of Aad in Z. One may proceed as before, if we

replace Z by A. Alternatively, every irreducible representation (p, V) of G

decomposes as a tensor product

WO

in accordance with the product structure (1.8). It is then easy to see that under the

action of A, the decomposition (1.5) of V is the tensor product of the

0 We allow compact factors because of (2.7).
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corresponding decompositions of each Vj into character spaces under Zp
tensored with the "trivial" factor W

On V there exists a positive-definite Hermitian form (the admissible inner

product) T (v, w) (see [7, p. 375]), determined uniquely up to a constant multiple,
with the property that

(1.9) i) T (p (k) v, p (k) w) T (v, w) if k e K

ii) T (p (X) v, w) T (v, p (X) w) if le p.

This follows from the fact that f © ip is a compact Lie algebra. If V is real, then

the admissible inner product can be seen to be the Hermitian extension of a

real inner product on VR.

Let I denote the intersection of the kernels of all finite-dimensional

representations of G. Then I is a central subgroup, and G/I admits the structure
of a real (affine) algebraic group. Since we are interested in G only for its finite-
dimensional representations and the symmetric space M, we may replace G by
G/I and assume that G is an algebraic group. To get all of the representations of g,

it is convenient in the abstract to replace G by its algebraic universal covering

group (i.e., one makes the preceding construction for the topological universal

cover of G); thus, we may and do assume that G is algebraically simply
connected. We remark that by (1.2), the number p (G) can be arbitrarily large,
even under this restriction.

Let, then, Gc denote the set of complex points of G. It is a simply-connected
complex Lie group with Lie algebra gc. Let Kc denote the connected subgroup
of Gc with Lie algebra fc. By general theory (see [17, XVII.5]), Kc is the
universal complexification of X, and so, by definition, every representation of K
extends to a holomorphic representation of Kc.

Assume that M is Hermitian, and let P+ (resp. P~) denote the subgroup of Gc
corresponding to the subalgebra p

+ (resp. p~) of gc. Then P+KCP~ is an open
subset of Gc which contains G (see [4, p. 317]). Moreover, G n Kc P~ K (see

[4, p. 318]), so the mapping of G -» Gc induces a holomorphic embedding

(1.10) M M Gc/Q ;

as Q KCP~ is a parabolic subgroup of Gc, M is compact and is known as the
compact dual of M.
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