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LOCALLY HOMOGENEOUS VARIATIONS
OF HODGE STRUCTURE

by Steven ZUCKER 1)

INTRODUCTION

] It was my original goal, in working on this paper, to show the link between
| the Hodge theory of vector-valued forms on (compact) quotients of Hermitian

B symmetric spaces to the Hodge theory for local systems that underlie polarized

B variations of Hodge structure. The first was the object of study over fifteen years

B 220, notably in the work of Matsushima, Murakami and Kuga; the second is an

| unpublished construction of Deligne that has been described and used in my
‘ | recent work [11]. This paper still fulfills its expository function, and it should

@ serve to unify related ideas, juxtaposing techniques from representation theory

| and transcendental algebraic geometry. However, it now seems likely that each
subject will benefit from techniques and ideas drawn from the other, as attested
f by the results in Sections 4 and 5. A starting point for this overlap already
| appears in [ 11, §12].

| We begin the description of the subject matter of this paper. Let V be a locally
constant sheaf on the compact Kihler manifold S, with V underlying a polarized
variation of Hodge structure. One can decompose the V-valued forms on S into
components of type (p, q); (r, s): (p, g)-forms” with values in the (r, s) Hodge
decomposition bundle. [Note that r + s will be equal to the weight of the
variation of Hodge structure, and p + g will usually be held fixed (though
arbitrary), so there are really only two independent parameters.] Then,
according to Deligne, the harmonic forms, and therefore the cohomology
H* (S, V), decompose according to “total” bidegree (P, Q), where P = p + rand

Q=4q+s.

| Now let G be a real semi-simple Lie group with finite center, K a maximal
compact subgroup, I" a cocompact discrete subgroup of G, S = I'\G/K, and

') Supported in part by NSF Grant MCS78-02731.
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(p, V) a finite-dimensional representation of G. There is a simple construction of
a locally constant sheaf V on S, such that there is a natural isomorphism

H* (T, V) ~ H* (S, V)

If G/K is Hermitian symmetric, then according to Matsushima and Murakami
[7] the harmonic forms decompose according to (p, g) type. It was this apparent
variance with Deligne’s result that aroused my interest in this material.

There is a natural “locally homogeneous” (complex) variation of Hodge
structure (4.9) on S, determined by the decomposition of ¥ into character spaces
under the center of K. The variation is real if (p, V) is. By combining Deligne’s
theory and that of [ 7], we see that there is a complete decomposition of harmonic
forms into (p, q); (r, s) components in this case. It is also possible to see this
directly from the identities (3.12) among the various Laplacians. In fact, an even
finer decomposition is possible (see (3.29)), similar to the one in the main theorem
of [2]. We draw algebraic consequences in hypercohomology in (5.16) and (5.23).

Ultimately, one would like to understand the cohomology in the case of non-
compact locally symmetric varieties S (of finite volume). In most cases,
according to [18], this is tantamount to saying that I" is an arithmetic subgroup
of G. The Hodge-theoretic techniques are, in a sense, “formal”, and they yield a
decomposition theorem for the intrinsic L, cohomology H{,, (S, V) (where
exactness conditions must involve only L, forms) relative to natural metrics. The
precise relation between the L, and total cohomology groups is only beginning
to emerge (see [12]). The case G = SL (2, R), where S is an algebraic curve, has
been treated in [11]. Here, the L, cohomology is naturally isomorphic to some
“topological” cohomology H* (S, V) on the smooth compactification S of S,
where V is a certain extension to S of the sheaf V (see [11, §6]). I suspect that it is
possible to describe the L, cohomology for arbitrary G in terms of data on a
suitable compactification of S (see [12, (3.99)]).

The use of Deligne’s Hodge decomposition in the locally homogeneous case
permitted us in [11, §12] to arrive at an explanation of the “mysterious”
isomorphism of (Eichler-) Shimura. Let V be Symm* C?, as a representation of
SL (2, R). The parabolic cohomology Hp (I, V) is naturally isomorphic to
H! (S, V), and the cusp forms of weight k + 2 for I determine V-valued
holomorphic 1-forms on S that are L, in the Poincaré (Bergman) metric. This
gives the (k+ 1, 0)-component (sic) of the Hodge structure, and one can see
directly that its complex conjugate is the only other term which can be non-zero.

In this paper, we prove for arbitrary G the cohomological result (5.29) which
underlies the Shimura isomorphism in the case of SL (2, R). It is most easily
stated in terms of the holomorphic de Rham complex Q25 (V).The Deligne Hodge
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filtration (associated to the (P, Q) decomposition) is placed on Q5(V), and we are
able to determine the cohomology sheaves for the successive quotients as [the
locally-free sheaves of sections of] locally homogeneous vector bundles
associated to certain representations of K. Of course, Q5(V) is itself comprised of
homogeneous vector bundles, and the main point is to recognize that each
successive quotient corresponds to a single and distinct character under the
action of a certain subgroup of the center of K. The representations of K which
occur in the cohomology sheaves are none other than the character spaces in the
Lie algebra cohomology H* (p*, V). From this, we are also able to illustrate how,
for real representations, cohomology vanishing theorems might be proved by
exploiting the fundamental role of the center of K (see (5.34) ff.). However, this
method does not seem to produce new results.

From the point of view of the transcendental algebraic geometer, locally
homogeneous variations of Hodge structure are interesting as a class of
examples of variations of Hodge structure in several variables. In the case of one
variable, Schmid’s SL,-orbit theorem [19] can be interpreted as saying that
every variation of Hodge structure i1s asymptotic, near a singularity, to a locally
homogeneous one for SL (2, R). This gives a fairly complete description in one
variable. However, there is currently no generalization to several variables, nor
are the asymptotics of the Hodge norm (a corollary of the SL,-orbit theorem in
the one-variable case) understood. Since the locally homogeneous variations of
Hodge structure are so explicit, it should be possible to calculate the asymptotics
directly, relative to a nice compactification of S. Hopefully, this will give us a clue
to the general situation ; it will certainly provide a lower bound for the content of
a general theory.

[ wish to thank Pierre Deligne for raising questions which extended the scope
of this work. I am grateful to David DeGeorge and Nolan Wallach for
discussions on Lie groups and symmetric spaces, and to Stephen Greenfield for
reading the original manuscript and suggesting improvements. In addition, I
would like to thank the referee for proposing improvements in the content and
exposition.
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§1. PRELIMINARIES

Let G be a connected real semi-simple Lie group with finite center, K a
maximal compact subgroup of G, and let ¢ > f be the corresponding Lie
algebras. For any sub-algebra a = g, we put

ac=a®RC

If B denotes the Killing form of g, B is negative-definite on f, and we let p
denote the orthogonal complement under B of fin g. Then g = £ @ p is a so-
called Cartan decomposition of g, and B is positive-definite on p.

Let M = G/K, the corresponding symmetric space. As [, p] <= p, B defines
an(Ad K)-invariant inner product on p ; and since we may identify p naturally as
the tangent space to M at the identity coset x, = K, B determines a unique |
Riemannian metric on M which is invariant under the canonical left G-action.

Assume initially that M is an irreducible symmetric space. Then, if one wishes,
G can be taken to be a non-compact almost simple group (i.e., g is a simple Lie
algebra). In that case, the space M admits a homogeneous complex structure,
and becomes an Hermitian symmetric space, precisely when f has a non-trivial
center 3. In thiscase,dim 3 = 1,and Z = exp 31is theidentity component of the

center of K. Let G*¢ denote the adjoint group of G (i.e., the automorphism group

of M) and let K*J, Z*® be the corresponding subgroups of G*!. A choice of
zo € Z2¢ of order 4 (for which Ad (z3) is a Cartan involution of g) determines an
almost-complex structure on p:
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pc=p @®p°
~with
pt = {X epc:Ad(zp) X = iX}
(1.1)
{ p” = {Xepc:Ad(zg) X = —iX}

This determines, via left-translation under G, a Kdhlerian complex structure on
M, such that the action of G is by holomorphic isometries.

For purposes of numeration, we define @ = p (G) to be the degree of the
covering map Z — Z*. It has the following properties:

(1.2) 1) if G is of adjoint type, p = 1 (cf. [16, (1.17B)]),

i) if G — G is a finite covering,. then p (G) divides u (G'),
) if G = SU(n, 1), thenp = n + L

Let p be anirreducible representation of G on the finite-dimensional complex
vector space V. We will say that (p, V) is a real representation if there is a G-
invariant R-subspace Vg of V' with

V= VR®RC>

such that G acts on V by extension of scalars. Under the subgroup Z, the

representation necessarily splits into one-dimensional Z-invariant summands,
on each of which Z acts by a character. We pick an isomorphism

(1.3) d:Z~S"={weC:|w|=1}.

The character group of Z is free cyclic, with elements

Y, Z — St
given by
X (2) = [¢ (2)]".
Let
(1.4) V<n> ={veV:ip@v=1x,020v Iif zeZ},
so that
(1.5) V=8, V<n>.

Each V <n> is invariant under K. If (t, W) 1s a representation of K, then we
defin= W<n> as in (1.4);if W is irreducible, then W= W<n> for some n,
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1.e., Z acts by a single character. We will assume to have chosen the isomorphism
(1.3) so that Z acts on p™ by a “positive” character.

(1.6) Example. Assuming that G is almost simple, we take Vx = g, and
p = Ad, the adjoint representation of G. Then p™ = V<pu>, . = V<0>,
and p” = V< —pu>.

For an irreducible (finite-dimensional) representation of G, we also use p to
denote the induced action of g on V. Because of the above description (1.6) of Ad,
it is easy to see that the following hold:

(1.7) ) pp)V<n> cV<n+pu>,pHV<n> c V<n>,
pp)V<n> cV<n—pu>.
i) {n: V<n> #0} = (L, A — g, A — 2, ., A — mp}

for some integers A > 0,m > p~ A

1) If V is real, then for all n,

V<—n> = V<n>  (complex conjugate)

and t‘hus mu = 2A.

((1.7 i) includes, in particular, the standard fact that p™ and p~ are Abelian Lie
subalgebras of gc.)
For the general case, write

(1.8) G = (Il).,G) x H,

where each G; is almost simple and of non-compact Hermitian type, and H is
compact.') Let

Z =M., Z;;and Z* = TI,_, Z3° aproduct of circles. Let A** be the diagonal
of Z*, and A the inverse image of A*! in Z. One may proceed as before, if we

replace Z by A. Alternatively, every irreducible representation (p, V) of G
decomposes as a tensor product

(®=1 (P, V) ® (o, W)

in accordance with the product structure (1.8). It is then easy to see that under the
action of A, the decomposition (1.5) of V is the tensor product of the

1) We allow compact factors because of (2.7).
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| corresponding decompositions of each V; into character spaces under Zj
| tensored with the “trivial” factor W.

On V there exists a positive-definite Hermitian form (the admissible inner
product) T (v, w) (see [7, p. 375]), determined uniquely up to a constant multiple,
[ with the property that

§ 19 ) T(pkuvpkw) =Tww if keK
i) T(p(X)ow) = T(n,p(X)w) if Xep.

This follows from the fact that T @ ip is a compact Lie algebra. If V is real, then
_ the admissible inner product can be seen to be the Hermitian extension of a
real inner product on V4. A

7 Let I denote the intersection of the kernels of all finite-dimensional
'3 representations of G. Then [ is a central subgroup, and G/I admits the structure
B of a real (affine) algebraic group. Since we are interested in G only for its finite-
dimensional representations and the symmetric space M, we may replace G by
G/I and assume that G is an algebraic group. To get all of the representations of g,
J 1t 1s convenient in the abstract to replace G by its algebraic universal covering
group (1.e., one makes the preceding construction for the topological universal
A cover of G); thus, we may and do assume that G is algebraically simply
connected. We remark that by (1.2), the number p (G) can be arbitrarily large,
g cven under this restriction.

Let, then, G denote the set of complex points of G. It is a simply-connected
complex Lie group with Lie algebra g¢. Let K denote the connected subgroup
of G¢ with Lie algebra fc. By general theory (see [17, XVILS5]), K¢ is the uni-
versal complexification of K, and so, by definition, every representation of K
¥ cxtends to a holomorphic representation of K.

Assume that M is Hermitian, and let P (resp. P ~) denote the subgroup of G
¥ corresponding to the subalgebra p* (resp. p~) of gc. Then PTKcP™ is an open
i subset of G¢ which contains G (see [4, p. 317]). Moreover, G n K¢ P~ = K (see
[4, p. 318]), so the mapping of G — G induces a holomorphic embedding

i (110 M= M = Go/Q:
as Q = K¢ P is a parabolic subgroup of G¢, M is compact and is known as the
5‘ compact dual of M.
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§2. VECTOR BUNDLES ON I'\M

Let I' be a discrete subgroup of G which acts freely on the symmetric space M,
and put S = I'\M. We will discuss two standard constructions of vector bundles
on §.

The first type is the quotient by I' of a homogeneous vector bundle on M.
Specifically, let (t, W) be a finite-dimensional representation of K. Then E(t) is

defined as the quotient of G x W by the following identification under the
action of K:

(2.1) (g w) ~ (gk™ L t(k)w) if kekK.

E(t) is naturally a C*® vector bundle on M, and the left action of G on M is
covered by the obvious left action of G on E(t). Thus, we may take the quotient
by any I' as above to obtain a bundle E (I, t) on S. Alternatively, E (T, 1) is an
associated vector bundle of the principal K-bundle I'\G. Note that if (1, W)
~ decomposes as a representation of K into

(T W) = @iz (1, W),
then one gets an induced decomposition
(2.2) ET1 >~ &=, ET, 1),

We may identify sections of E (I, 1) as the I'-invariant sections of E(t), which in
turn are given by mappings ¢: G — W which satisfy

(2.3) d(ygk™ ) = 1k)d(g) for al yeTl, geG, kek.

An Hermitian metric can be placed on E (I, 1) by a choice of 1 (K)-invariant
inner product on W. (Such exist because K is compact.) The corresponding
constant metric on G x W descends to E (T, 1), in view of (2.1).

(2.4) Example. Taking T = Ad |pc, we have a natural isomorphism of E (1)
and the complexified tangent bundle to M, and we may take quotients by I'.

The second type of vector bundle is the flat bundle associated to a finite-
dimensional representation (s, V) of I'. We let ® () denote the quotient of
M x V under the action of I':

(m, v) ~ (ym, V¥ (v) v).
Sections of @ (\s) are given by functions f: M — V such that
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(2.5) fx) =¥ f(x) if yel,xeM.

. The local sections of @ () determined by constant V'-valued functions determine
a flat structure on @ (), whose sheaf of locally constant sections will be denoted
V.

The two constructions above are related by the elementary

(2.6) ProposITION. Let (p, V) be a representation of G (which then
restricts to representations of K and T'). Then the mapping

[1RR

GxV-o>GxV,

defined by E(g,v) = (g, p(9)~ ' v), induces an isomorphism of C* vector
bundles
E: @ (plp)= E (T, plg) -

(2.7) Remark. Let (p, V) be a finite-dimensional representation of G, and
(s, W) a finite-dimensional unitary representation of I'. We note that by the
standard ruse of replacing G by G' = G x U (W), where U (W) denotes the
unitary group of W, V ® W becomes a representation space for G’, and so the
bundle ® (p|- @) falls into the class of bundles covered by (2.6).

A natural metric on @ (p|p) is provided by the admissible inner product T

(1.9). Forge G, v,weV, let (at gx, € M)
(2.8) <v,w>g = T(plg Hv,plg™)w).

Since K acts isometrically with respect to T, it follows that (2.8) is well-defined on
M x V; and it is evident that the action of I" is isometric, so (2.8) descends to
® (p|p). T also determines a metricin E (I, p|g), and it is clear that the mapping =
of (2.6) is then an isometry of bundles.

Assume next that M is Hermitian. Then to every finite-dimensional
holomorphic representation (o, W) of Q is associated a Gcg-equivariant
holomorphic vector bundle E () on M, constructed as in (2.1). By restricting to
M and taking the quotient by the action of I', we obtain the holomorphic vector
bundle E (T, o) on S. Q-invariant subspaces of W determine holomorphic sub-
bundles of E (I, o). Along the same lines as (2.6), we have:

(2.9) ProprosITION. Let(p, V)be a representation of G (which then determines
representations of Q and I'). Then the mapping

E:GCXV"‘)G(:XV,
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defined by Z(g,v) = (g, p (9) ! v), induces an isomorphism of holomorphic
bundles

E: @ (plr) > E (T, pdly) -

Every representation t of K determines a holomorphic representation of K,
which then extends to a representation o, of Q by setting o, to be trivial on P,
since K normalizes P~. The C*® isomorphism E (I, 1) —» E (I, 5,) imparts a
holomorphic structure to E (', 7); however, an isomorphism (2.2) need not be
holomorphically compatible with (2.9).

(2.10) Example. Takingt = Ad™ = Ad K| pt Ve obtain a holomorphic
isomorphism

E (1) ~ Oy (holomorphic tangent bundle of M),

and we may take quotients by I'. Therefore, since the Killing form gives (p *)*
~ p~ as a representation of K,

E(T, APAd™) ~ QF .

(Here and elsewhere, we identify a vector bundle with its locally free sheaf of
germs of sections.)

There is a relation of the preceding to automorphic forms, coming from the

following. Let W be a finite dimensional vector space over C. Then an
automorphy factor / is a C* mapping

/' G x M - GL(W)
which satisfies

(2.11) 1) / (g, x) is, for fixed g, a holomorphic mapping from M into GL (W),
ii) / (gh, x) = / (9, hx) / (h, %)

We observe that_~is then completely determined by the function / (g, xo)on G.
Given such a /‘, one forms the automorphic vector bundle A (T, / ), a
holomorphic bundle, by taking the quotient of M x W under the action of I":

(x,W)~(yx,/'(y,x)w) forall vyel, xeM, weW.
Sections of A (', /) are then given by functions f: M — W such that
(2.12) fox)=_(x) f(x) for all vyel, xeM;

these are called automorphic forms.
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From an automorphy factor /', one obtains a representation T % of K by
setting

T, (k) =7 (kxo),

because of (2.11, ii). We then have

(2.13) PROPOSITION. Let / bean automorphy factor. Then thereisa C*
isomorphism

W:E(,t,)—>AT/),
induced by the mapping ]
§1 P:Gx W-Gx W
¥ (g, w) = (9,7 (9 x0) W)

(2.14) Remark. For a representation (p, V) of G,
S/ (@,x) = p(9)

defines an automorphy factor, for which (2.13) is a reformulation of (2.6).
Conversely, to the Lie group G is associated its canonical automorphy factor
¥ (see [7, p. 397]), which is a C* mapping ¢ : G x M — K which satisfies the
equations of (2.11); and _# (g, x,) 1s the Kc-component of g in G =« U
= P K¢ P™. Then each representation © of K determines an automorphy
£ factor

J(9.%) = 1(F (9. %)

In this case, the mapping ¥ of (2.13) extends to a biholomorphic mapping of
& U x W, from which it follows that

Y:EI,7) - AT, /;)

is an isomorphism of holomorphic bundles. Thus we have also, for instance,
Q= AT, farma™)-

In this manner, holomorphic sections of bundles E (I", T) become given as spaces
E of automorphic forms. One also uses (2.13) to construct local frames for E (T, 1).
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§3.' THE COHOMOLOGY GROuUPS H"(I"; p, V)

In this section, we will discuss the various approaches toward computing the
Eilenberg-MacLane cohomology groups H" (I'; p, V) for a finite-dimensional
representation (p, V) of G, which we may as well take to be irreducible.

We begin with the use of deRham cohomology, as carried out originally in
[7]. Since M is contractible, there is a natural isomorphism

H"(I';p, V) ~ H"(S, V)

(with notation as in §2), hence we may compute these cohomology groups from
the complex of V-valued C*® forms on S (by the deRham theorem).
We will make use of the following obvious diagram of manifolds

(3.1)

A

G SI\G
k] l
M S

Let 1 be an element of " (S, V), the space of global C® n-forms on M with
values in V. Then

¢ = k¥*r*n

is a V-valued form on G satisfying the equations

(3.2) i) v*¢ = p(v [ if yell
i) Ly = if Yef,

Zy = Lie derivative = (A"Ad*) (Y)
i) 1yp = 0 if Yet

1y = interior multiplication by Y

Conversely, every element ¢ € /" (G) ®¢ V (/" (G) denoting the space of C* n-
forms on G) that satisfies (3.2) 1s x*n*n for some n € /" (S, V) We then apply the
mapping = of (2.6) to ¢, obtaining the n-form

(3.3) A=plg Ho

which satisfies
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(3.4) ) y*n =1 if yel,
i) #n = —p(Y)A if Yef,
iii) 1, = 0 if Yet.

In particular, we may view 7} as a vector-valued form on I'\G.

We next describe the Hodge theory for H" (S, V) from this point of view, as
was done in [7] and [8]. Actually, one must work with the L, cohomology when
S is non-compact. Since we have defined a metric on A4 (I', p) in Section 2, and
on the tangent bundle by the Killing form, there is an L, norm | n ||, for
n e /" (S, V), and the L, cohomology is defined by

(3.5)

L (5.V) = mesx"(S,V): nis L, and dn = 0}
(2) (9 =

{n asabove: mn =dy forsome L, Ye" !(S,V)}

There is then an obvious mapping
(3.6) H{y (S, V) = H" (S, V),

and one is ultimately interested in understanding the kernel and image of this
mapping. (See also [12].)

(3.7) Remark. We may compute the L, cohomology groups (3.5) from the
complex of weakly differentiable L, forms £ (,,(S, V); i.e., we may drop the
smoothness condition on forms (see [ 15, §8]). Then d becomes a densely-defined
differential for the “complex” of Hilbert spaces of V-valued L, forms, and

{weakly closed V-valued n-forms}

H,, (S,V) ~ )
@& V) {range of d on L, (n— 1)-forms}

We define the reduced L, cohomology Hf,, (S, V) by replacing the range of d
in the above quotient by its Hilbert space closure ; the reduced L, cohomology
inherits a Hilbert space structure from the L, inner product.

In discussing | nj ||(,), we wish to make use of the form 7} of (3.4), and we have

(3.8) LemMma [7, p.380]. If neo"(S,V) and e " (I'\G) ® V is the
corresponding element, then

g "(22) =c|n ”(22) 5

where ¢ equals the volume of K.
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While much of what follows holds in the absence of a complex structure, we
restrict ourselves to the Hermitian symmetric case for the purposes of this
exposition. For the general case see [7].

Choose an orthonormal basis {X;}¥_., of p*, so

(X1, X1, e Xio Xi}

forms an orthonormal basis of pc. For n e &7 4(S, V), put

X;,)ed° GV .

Let
d=d + d

be the usual decomposition of the (flat) exterior derivative d on «7°(S, V) into
components of bidegree (1, 0) and (0, 1). The bidegree (1, 0) differential operators
D’ and d, are defined by the formulas

(39) (D,n)i1,...,ip+1‘,_i1,---,jq

p+1
. _1ywu—1 : .
= 21 (—1) Xy Migscoos o oo ip 4 1810 o g 2
u=

(3.10) (d T])u v ip + 13 J1s s Jq

u—1
1) Xiu) nil""’ﬁ"“’ ip+1:jl1"'7jq :

||[\/]+

One also puts D" = D' and d, = d—; Thend = D' + d,andd” = D" + d;;if
weputD = D' + D"and d, = d, + d, thend = D + d, We remark that D
gives a metric connection on ® (p); heuristically, we regard k*E (p) as being |

canonically flat.
Let D represent any of the above operators. One can obtain directly formulas

for the L, adjoint D* and the Laplacian

(3.11) Op = DD* + D*D

(see [9, pp. 68-70]). From these calculations, one obtains also the following
identities
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(3.12) PROPOSITION. As operators on Z°(S, V),

) s = O + O
) O, = Op + Ca,
) Op = Qp + Op~
iv) de = Dd;, + Dd;)'
v) O = Op + Oy

(3.13) Remark. One always has
[ =0d. +04d
(D, +D,) D, D,
so (3.12) amounts to establishing the vanishing of the expression in parentheses
on the right-hand side. The identities in (3.12) are not general formulas for flat
bundles on manifolds, but are particular to the group-theoretic context.

+ (D, D5+ D3P, + DD, +D,DY),

Since S is complete in the induced metric from M, the operators D as above
have unique [3] closed extensions to £, (S, V), so the identities (3.12) continue
to remain valid in the strict sense on L,. From this, one may conclude

(3.14) PROPOSITION. If meZ(,,(S,V), the following are equivalent :
1) Om =0 (n is harmonic),
i) O,m = Ogm = 0
i) Opm = Opn = Ogn = Oagn = 0,
iv) D = (D)*n = D'n = (D"y'n = djn
= (d)*n = dm = (d)*n = 0.
Since Oy is elliptic for any of the operators D above, harmonic forms are

necessarily C”. Let 4 {(,, (S, V) denote the space of L, harmonic n-forms with
values in V. We obtain by standard theory (see [15, §1]):

(3.15) ProrosiTION. For all n,

1) _?2) (Sa V) = /?2) (S’ V)a

i) The mapping /‘{'2) (S, V) = H}, (S, V) is injective, and is an
isomorphism if and only if d, operating on ,9,”{’2_)1 (S, V), has closed range.
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(3.16) Remark. An easy way to guarantee that the mapping in (3.15, ii) is an
isomorphism is by showing that H{,, (S, V) is finite-dimensional.

By (3.14,11) a form is harmonic if and only if it is annihilated by the
Laplacians of the bidegree-preserving operators d’ and d”. Therefore, a form is
harmonic if and only if its (p, g) components are harmonic, so

(3.17) A8, V)= @ ABIS, V).

ptg=n

Passing this through the isomorphism (3.15, i), we get

(3.18) Hy(S. V)= @& HBIS V).
. p+q=n
If we take S to be compact, we have H{,, (S, V) = H" (S, V), and in (3.18) the
Hodge decomposition of [7].
The most significant assertion about Laplacians, as we will see in Section 5
is given by

b

(3.19) ProrosITION [8, p. 14].
Llp + Oa = Op + []d;;.

This fact was not fully exploited in the earlier work.

(3.20) CoroOLLARY. m is harmonic if and only if
Llpn = Dd;,n = 0.

We close this section with a brief account of another way of viewing the
cohomology groups H" (I'; p, V), currently preferred in representation theory.
For'simplicity, we assume that S is compact, and mention at the end what
changes must be made in the non-compact case.

From the description (3.4), it is clear that we may regard an element of
/" (S,V) as a mapping from A"p. into &/°(I'\G) ® V that satisfies a
transformation rule under f. This correspondence gives an isomorphism of
H" (S, V) with the relative Lie algebra cohomology (see; e.g. [8, pp. 6-8] or [14,
Ch. I]):

(3.21) H" (3¢ fe, JZO T\G) ® V),

associated to the cochain complex
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(3.22) Hom, (A'p #° (T\G) ® V).

Here, g¢ acts on /% (I'\G) by differentiation, induced by the regular
representation of G.

(3.23) Remark. By a theorem of van Est (see [5, p. 386]), the relative Lie
algebra cohomology is in turn isomorphic to the differentiable (or even
continuous) Eilenberg-MacLane cohomology

H (G, «£° (T\G) ® V).

For this reason, (3.21) is often referred to as “continuous cohomology.”
The cohomology (3.21) decomposes according to the splitting of
#° (I'\G) ® V. First, one decomposes L, (I'\G) as a representation of G:

N
(3.24) L, T'\G) ~ @ E,
into the direct sum of irreducible unitary representations of finite multiplicity.
Then
N
(3.25) L,(T\G, V)~ & (E,QV)

Taking C*® vectors gives the decomposition

(3.26) L°(T\G) Q@ V ~ @ (EX ®V),

By a formula of Kuga (see [7, p. 385] or [14, p. 49]), in terms of the form 7, the
Laplacian is given by

(327) On =[-C+p(O]7,

where C is the Casimir element of the enveloping algebra of g. It follows that in
each summand of (3.26), there can be non-zero harmonic forms only if the
infinitesimal characters y, of (n,, E,) and x, of (p, V) agree on C. In fact, if the
space of harmonic forms is non-zero one must have x, = ¥, (see [1, (2.4)]). In
this case, every cochain with values in E, is harmonic. Thus,

(3.28) H"(S,V)

12

@ HomK (Aan’ Ea® V)

Xe = Xp

b (AP(¢QE,QV)¥ (K-invariants).

By = %y

12

From (3.27) and (3.28), one obtains the following:
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(3.29) PrOPOSITION. . Let (py, V) and (p,, V,) be two irreducible
representations of G, and supposethat p,(C) = p, (C). Then every morphism
of K-representations

GAMPFRV, > AP RV,

induces a mapping of harmonic forms
Oyi (S, V) = £ 2(S, V).

and thus a mapping ¢,:H™ (S,V,) > H™(S,V,). (If the infinitesimal
characters of (py, V) and (p,, V,) differ, then ¢, is the zero mapping.)

If we now decompose each A” p¢ ® E, ® V as a representation of K and
apply (3.29) to the projections onto each component, there is induced
decomposition of H” (S, V), much in the spirit of [2]. If we decompose only A" p*,
we obtain the decomposition (3.18). We will refine that decomposition in §5.

If S is non-compact, then L, (I'\G) is the direct sum of its discrete spectrum
L, (I'\G); and the continuous spectrum L, (I'\G),. One then has a
decomposition like (3.24) only for L, (I'\G),. From there, one obtains an
injection

(330) B (Er®V) > 45 T\G) RV,

whose image consists of those C® V-valued functions for which all left-invariant
differential operators are in L,. Borel has shown that (3.30) induces an
isomorphism on cohomology. Also, if I is an arithmetic subgroup of G, then all
harmonic forms come from L, (I'\G),. In this case, one therefore obtains, as in
(3.28), the isomorphism

(3.31) 1,5, V) ~ @ (A"PEQEQV)".
Xg = Xp

Moreover, the above sum has only finitely many non-zero terms, as the reduced
L, cohomology is finite-dimensional. Borel discovered the initially surprising
phenomenon that the (non-reduced) L, cohomology is for some groups infinite-
dimensional, with d having non-closed range on the continuous spectrum in
certain dimensions; however, this never occurs in the Hermitian case. As a
reference for this paragraph, see [13] and the references cited therein !). (See also
[12] for a different approach to the L, cohomology.)

1) See note added in proof.

e T KM B L S AR S S SR e T
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84. THE VARIATION OF HODGE STRUCTURE ASSOCIATED TO (p, V)

Under the assumption that V is a real representation of G, the Hodge theory
for H" (S, V) fits, perhaps surprisingly, into the more general framework of [11].
Associated to the irreducible representation (p, V) of G, there is a homogeneous
variation of Hodge structure on the Hermitian symmetric space M, which we
shall now define and analyze. The notion turns out to be a variant of ideasin [ 16,
§17.

We recall some basic definitions from Hodge theory. We will use some of the
same symbols that were employed in the preceding sections, in a more general
context, so that the passage from representation theory to Hodge theory will be
clearly laid out. Thus, let Vg be a finite-dimensional real vector space, V its
complexification.

(4.1) Definition. A Hodge structure of weight m on V is a direct sum

decomposition
V= & H"?

D, qeZ
ptaq=m

such that H»1 = H% P,

Let € be the Weil operator of the Hodge structure, defined as the direct sum
of the scalar operators i~ % on H? 4.

(4.2) Definition. A polarization of a Hodge structure is a bilinear form B (v, w)

on Vg such that B(C€v,9) > 0 whenever v % 0, and the H”? spaces are
orthogonal with respect to the Hermitian extension of B to V.

(4.3) Remark. The definition (4.2) implies the condition usually imposed on B:
that it be symmetric if m is even, skew if m is odd.

Ordinarily, the primary example of a polarized Hodge structure of weight m
is the cohomology group H™ (M, C) of a compact Kéhler manifold M , with a
polarization built from cup-product.

(4.4) Definition. The Hodge filtration
oD F o F*t 5 |
is defined by F* = @ H” 1.

p=r

One recovers H” 9 as FP N F1.
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Let S be a complex manifold. We will give the definition ot a polarizable (real)
variation of Hodge structure of weight m in terms of the universal covering
n:M — S. LetI' = ny(S), viewed as the group of deck transformations of M. Let
(p, Vr) be a finite dimensional representation of I' (the monodromy). Take
M x V:if we place the usual topology on ¥V, we have a vector bundle ¥ ;
placing the discrete topology on V, we get a constant sheaf V. We require:

(4.5) 1) For each x € M, there is a Hodge structure of weight m:
V =& HY>?,
11) For each (p, q),
wome = L1 (i) x b

xeM

forms a C* sub-bundle of ¥ .

1) For each r,

7 =11 ({x} x F}) (F, = & H%9)

xeM p=r
forms a holomorphic sub-bundle of ¥".

iv) If o 1s a local holomorphic section of %", and X is a local
holomorphic vectorfield on M, then Xo is a section of #7~ 1.

v) There exists a flat bilinear form which polarizes the Hodge structure
for each x.

(In order to pass this data down to S, we add)
vi) If yeD,p(y) HY* = H}*.

We can then take quotients of ¥, %" and V by I to obtain objects on S, which
will also be denoted ¥", #" and V, hopefully without confusion.

Ordinarily, the primary example of such V underlying polarized variations of
Hodge structure are the systems R™ f C of m-dimensional cohomology along
the fibers for families of Kahler manifolds f: 9t — S.

It is useful to relax the conditions of (4.5). Following a suggestion of
P. Deligne, we give:

(4.6) Definition. Let (p, V) be a finite dimensional representation of I' (not
necessarily real) and V the resulting locally constant sheaf. By a complex
variation of Hodge structure of weight m, we mean the collection of data
described in (4.5) with the following modifications:




VARIATIONS OF HODGE STRUCTURE 263

a) For (i), we drop the requirement that H2*= HZ%?”, for it may be
inconsistent with (vi). (One might call the resulting decomposition in (4.1) a
" complex Hodge structure.)

b) To (iii), we add for each s,
7 =11 ((x} x F5)  (Fs= @ HEY)

xeM qzs
| forms an anti-holomorphic sub-bundle of ¥".

c¢) To(iv), add:if o is a local anti-holomorphic section of #" and X is a local
anti-holomorphic vector field on M, then Xo is a section of #"~ 1.

d) Replace (v) by: there is a flat sequilinear pairing
B:VxV->C,

| such that B (Cv, v) > 0 whenever v # O.

(4.7) Remark. When V is real, and one has a (real) variation of Hodge‘
| structure, then (b) and (c) of (4.6) are automatic, and P is given by

B(U,W) = ﬁ(U,W)

Let now (p, V) be an irreducible representation of the Lie group G. Then we
may write, according to (1.5) and (1.7)

(4.8) V=@ V<h—su>,
=0

N

where ¥, is the highest character occurring in (p,' V). We convert (4.8) into a
complex variation of Hodge structure of weight m on § = I'\M by first setting

(4.9) Hg® = V<A — pp>

B fp,g>0andp + g = m; we then define

- (4.10) H2% = p(g)H3? f gxoeM.

For obvious reasons, we will call this a locally homogeneous variation of Hodge
| structure. It is real whenever (p, V) is.

| We must verify that the conditions of (4.6) hold ; we follow the numbering in
| (4.5). Because of (1.7, 1), the space HZ' ? is well-defined (in the real case, use also
(1.7, 1)), so (1) is satisfied. Properties (ii) and (vi) pose no difficulty. We get (iii)
| from the fact that F = @ HE? (resp. F§y = @ H%9) is a KPP~ (resp.

p=r qzs
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P* K¢)-invariant subspace of V, and (iv) from the fact that p* F}, = F,™ ' (resp.
p F, = F51); both assertions follow from (1.7, i) and (4.9).

The flat polarization (4.6, d) ((4.5, v) in the real case) is provided by the
admissible inner product T (1.9). Let €, denote the Weil operator of (4.8). Then

(4.11) T (v,w) = B(€yv, w) if we put Bw,w = T (€5, w).

We assert that B is G-invariant (with G acting by p on the second entry). For this,
we need only apply (1.9) to see that

BpX)v,w) + B(v,p(X)w) =0

for all Xege, v,weV. (In the real case, we are displaying the self-
contragredience of p.) That B determines a polarization now follows by
homogeneity. This completes our verification.

Note that at gx, € M,

(4.12) B (€,,0s W) (P (@€ p (@) 0, w)

(Cop(@ to,p(g) " W)

=T(p@ ‘v,ple 'w,

so the “Hodge metric” coincides with the one given in (2.8). Also, n € &" (S, V)
takes its values in #7 7 if and only if j € " (I'\G) ® H%“.

=
=7

§5. HODGE THEORY FOR H" (I"; p, V),
FROM THE VARIATION OF HODGE STRUCTURE

In this Section, we will review the general Hodge theory for locally constant
sheaves V underlying polarizable variations of Hodge structure. After that, we
will insert the construction of (4.9) into the general framework and draw special
conclusions about this case. There are both local considerations and global
results. The latter follow “automatically” only when S is compact, in which case
they are due to Deligne (see [11, §§1-2]). The global results generalize to non-

compact quotients of finite volume for G = SL(2, R)[11,§§7, 12], and hopefully
we will soon be able to handle G = SU (n, 1). We should view the compact case

as providing formal guidelines for a general theory.

[
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Let V underlie a complex polarizable variation of Hodge structure of weight
m on the compact Kéhler manifold S, as in (4.6). Let

AGI(S, HTT)

denote the space of square-summable C® forms on S of type (p, g) with values in
A" 5. Then

(5.1) Ay (S, V)= @ AiI(S, AT
ptq=n
rts=m

As a consequence of (4.5, iv) and (4.6, c), it is easy to see that the operator d
decomposes, under the splitting (5.1), into a sum of four operators, written &, 0’ V'
and V', which, in terms of the 4-fold gradation (p, q; r, s), are respectively of
degrees (1,0;0,0), (0,1;0,0), (1,0; —1,1), and (0, 1; 1, —1). We define

D, — a/ + ‘_7/
(5.2)

D=0+ V,;
the pairing of operators in (5.2) is done according to “total holomorphic” degree

p + r. We have Laplacian operators for ©" and D" as in (3.11). The following
generalized Kahler identities hold :

(5.3) ProposITION (Deligne). [1,; = 2ZD': 2D1>"

Proof. (See [11, §2]; the generalization to complex variations of Hodge
structure is direct.)

Put
(5.4) BEC = @O ABI(S, HY).
ptr=P
gt+ts=Q

In terms of this new bigrading, ©' is of bidegree (1, 0) and D" is of bidegree (0, 1).
As a consequence of (5.3), one obtains a decomposition of the harmonic forms
into harmonic components of type (P, Q):

(5.5) AtV = @& AL,
P+Q=m+n
with £ 552 = /&P in the real case. This decomposition passes to cohomology,

as in (3.18), and thus we have
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(5.6) THEOREM (Deligne). Let V underlie a complex polarizable variation of
Hodge structure of weight m on S. Then thereis, for each n, an associated
decomposition :

1, S, V)= @&  H{P
P+Q=m+n
If the variation of Hodge structure is real, then the above is a Hodge structure of
weight m + n.

In order to work effectively with these decompositions, it is best to eliminate
the C* forms, and work only on the holomorphic level through the use of
hypercohomology. Let Q5 (V) denote the holomorphic deRham complex with
values in V, with differential 0. The following was given by Deligne:

(5.7) Definition. The Hodge filtration {F"Q5(V)}on Q% (V)is given by
FOL(v) = 4@ F "

because of (4.5, iv), F"Q% (V) is a sub-complex of Q5 (V).
The successive quotients

Gry Q5 (V) = F Q5 (V)/FT 71 Q5 (V)
have terms

(5.8) GryQ5(V) = Q5@ F.""",

where 921 = FIYFI+L,
Then o7°(S,V) is a fine resolution of 23 (V), possessing a corresponding
filtration. We summarize the main consequences:

(5.9) PROPOSITION. Assume that S is compact. Then
1) The spectral sequence

Ep4 = HPY(S, Grg Q5 (V) = H"(S,Q5(V))~ H?79(S, V)

degenerates at E,.

ii) The filtration induced by {F" Q5(V)} on H"(S,V) coincides with the
Hodge filtration associated to the decomposition of (5.6 ) under Definition (4.4).

111) There is a natural. identification

H" 2 ~ H" (S, Gri Q5(V)
for P+ Q =m+ n
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Proof. The above statements are all immediate consequences of (5.6).

We now specialize to the case of a locally homogeneous variation of Hodge
structure associated to (p, V), as described in the preceding section. First, we
recall the differential operators from (3.9) and (3.10), and observe:

(5.10) PRrOPOSITION. For a locally homogeneous variation of Hodge structure,

0 =D and V =d,.

(5.11) CorOLLARY. Under the same hypothesis,
D =D +d, and D" =D"+d,.

This, when coupled with (5.3), explains (3.19).

We seem to have two different Hodge decompositions on H,, (S, V), one (5.6)
coming from the variation of Hodge structure, and one given by (3.18). The two,
in fact, are mutually compatible, for (3.14) implies that the Laplacian [], respects
the complete decomposition (5.1). Thus, we obtain in the locally homogeneous
case

(5.12) A V)= & 2B (S V),
Fis=m
and thus
(5.13) H (S, V) = & HEY"9(S, V),
i
with
(5:14) Byt (8. V) = @ HE”"9 (S V),
(5.15) H{’i)Q= o) gg:zr,)q):(r,s) (S, V).
ptr=P
gts=Q

As a consequence of (5.12), we derive

(5.16) PROPOSITION. Assume S is compact. Then for all integers k, the
spectral sequence

(EP? = HO(S, Q8 ® 9.%77) = HP* (S, Gri Q5 (V)

degenerates at E,.
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Proof.- We have the isomorphism

Hn (S, GI‘I'IE-Q‘.S-(V)) ~ Hk,n+m—k |
= @  HPorIE§, V),

p+tr=k
gt+s=n+m—k

and by the Hodge-Dolbeault isomorphism and [11, (1.10)]
(LT = [ (S, Q & {{rgk—p)
~ {neP (AP O = 0}

The E, term of the spectral sequence is equal to the cohomology of the E, term
under its differential d,. We again use [11, (1.10)] to assert that in terms of the ¢'-
harmonic forms, d, is given by V'. In other words, the E, terms are naturally
isomorphic to the cohomology groups of the complex of D”-harmonic forms
under the differential d,. Representing classes by d,-harmonic forms, we have

@ ]Eg‘q ~ {n DD"n = 0 s and aISO Dd;jrl = O} .

By (3.20), the right-hand side gives H* **™~* so the desired conclusion follows.

(5.17) COROLLARY 1. There is a natural injection
LS HY (S, 2R gar)

(5.18) COROLLARY 2 [7, p. 413]. H®"(S,V) = HOmM©O-m (S V) (Hence
also H™°(S,V) = H™ 9 tm0 (5, V), )

Proof. Let n be a harmonic (0, n)-form with values in V. Then by (3.20), we

must have
dn =0.

Since n is an anti-holomorphic form, we than have
p(X)n =0 forall Xep™.

This forces the form 7j (3.3) to take its values in ¥V <m>, proving (5.18) by the
last assertion in §4.

We also have:

(5.19) PROPOSITION. The spectral sequence

WEZ e = HP (S, #° (GriQy (V) = HP*4(S,GrEQs (V)
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degenerates at E, if S is compact, and
pEg 4 = H@ P Emamtina(§, V),
Proof. Let
#E = 0 (GrEQ5 (V)
C=% g1,
i =ker {Qf ® G2+ 1 > U Q G F Y
B = im (O @ %t o Q1@ 9.

Then all of the above are automorphic vector bundles associated to
' representations of K on vector spaces H{, Ci, ZI B{ respectively. As a
' consequence of Schur’s Lemma and the semi-simplicity of K-representations,
Ci~ Hi @ Bi @ Bi"*

as a representation of K. Therefore, by (2.7),

|
i

Cl~ H1D BLD B

This implies that there is an embedding

~ which 1s a quasi-isomorphism. From this, it is clear that the spectral sequence
E5 T must degenerate at E,, and moreover that H? (S, #%) gives the (g, p);
- (k —g, m+g—k) component of H?*4 (S, V).

(5.20) Remark. We also obtain from the above that
Jl (E5 % >~ ES P,
so the argument of (5.19) gives an alternate proof of (5.16).

By combining (5.19) with (5.9), we obtain

) COROLLARY. If S is compact,

dim H"(S,V) = ¥ ¥ dim H? (S, #9).

k pt+tq=n

We can generalize (5.19) to the non-compact case, if we forego the
;hypercohomology. Because a morphism of representations of K induces a
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bounded mapping between the associated locally homogeneous vector bundles, |
we can see, by reasoning similar to that used in (5.19), that
(5.22) HYpremamTamk (s, V) ~ 3Hp,) (S, #7)
(b e y? (#D: 5 = 0)
{d asabove: ¢ = dn forsome mneLE" ' (HD)}

If we make use of the full extent of (3.29), we can actually deduce the following |
generalization of (5.9):

(5.23) THEOREM. Let Y*° be a Q-invariant d,-subcomplex of A'p~ @ V |
(Q asin (1.10)), suchthat p~ A YP < YP'1 so that a sub-complex % of |}
holomorphic sub-bundles of Q% (V) is determined by Y*°. Assume also that |}

Y nd, (A p QV) =d, Y*.
Then if S is compact, there are short exact sequences
0 —» H"(S,%*), > H"(S, V) » H" (S, Q5 (V)/Z*) - 0
for all n, with +(H"(S,%")) given by the subspace of harmonic n-forms with |
values in %" "

Proof. Let FP%* be the filtration on % induced by (5.7). Consider the |

spectral sequences . .
AET T = HPTA(S, Gri@ )= H? " (S, %),

sE7S = H (S, Griy") = H *° (S, Gr}%*) .
As in (5.16), the second one degenerates at E,, with
gE% S ~ H* (S, #"Gri%" .
By assumption, #? Gr{ %* may be identified with an equivariant sub-bundle of ':
#", whence zE7 * becomes identified with a subspace of /4 -9 (?P=rm=2+n (g V) §
Thus, the mapping LED4 S HPT(S, GrEQy (V) |

is an injection. Since the spectral sequence (5.9, 1) degenerates at E, it follows that §
4E? % does likewise, and the assertions of (5.23) follow. |

(5.24) Remark. Takf: %= (FPQ5) @ V (any p) in (5.23). Then one recovers i
(3.18) and its algebraic consequences: the spectral sequence

E?% = HY(S,Q%(V)) = H?"1(S,Q5(V)) ~ HP"4(S, V)
degenerates at E;.




VARIATIONS OF HODGE STRUCTURE 271

We next analyze the terms of the Hodge decomposition, as given in (5.9, iii).

n particular, we will concern ourselves with the vanishing of some of these terms.

 Given the irreducible representation (p, V) of G, we let 1, denote the

epresentation of K on the subspace H% (4.9) of V obtained by restricting p. The
ollowing is an immediate consequence of our constructions:

(5.25) LEMMA. There is a holomorphic isomorphism

4. ~ E(I', 1) .

(5.26) COROLLARY. As holomorphic vector bundles on S, the terms of the
complex Grk Q5 (V) are

02 ® F2*"? ~ E(T, A’Ad” ®7,_,) .

‘(5.27) COROLLARY. Assume S is compact. Then for all n, H™° (S, V)
given by the space of automorphic forms

{feT (M, Q) ® A" p~ @ H3 %1 f (vx) = (A"Ad” ®1,) (£ (1, X)) f (¥)}

Proof. Combine (5.18) and (5.26) with (2.13).

Establishing the vanishing of some of the H?* ¢ is easiest if we can prove that
the complex Grk Qg (V) is acyclic, or is at least close to being so (cf. [11, §12]).
-Since the differentials in this complex are (¢-linear, we are reduced to a problem
of linear algebra. We make the following simple observation:

(5.28) LEMMA. Under the identification (5.26 ), the differentials in Gre Q5 (V)
are given by d, (3.10).

~ Aswas pointed out to me by David DeGeorge, the operator d,, when applied
toallof A*p~ @ V, gives rise to the Lie algebra cohomology H*(p*, V) for the
ZAbelian Lie algebra p™. We have the C*® isomorphism

E (T, A'Ad‘®p) = €B Gry Q5 (V) .

| Moreover we can recover each summand GrFQj (V), since the central subgroup

A (defined after (1.8)) of K acts on A? p~ ® H* 7™ k*? by the character
X-pu+i—k-pul = Xn—kn

? independent of p, and faithfully determined by k.

i




272 S. ZUCKER

Since d, commutes with the action of K (see, e.g., [10,(2.5.1.1)]), H? (p*, V) is
a representation space for K, and equals the direct sum of certain irreducibles
contained in the g-cochains (cf. the proof of (5.19)). Let of denote the
representation of K on H(p*, V) < I >. Since the construction :

11— E[, 1)

1s an exact functor, we combine the above statements to obtain

(5.29) THEOREM. The cohomology sheaves of Grk Q5 (V) are given by =~ |
Hi~E([, o ).

(5.30) Remark. Thisexplains the occurrence of Lie algebra cohomology in [8,
§10]. Also, we point out that (5.18) can be deduced from (5.29).

In order to compute the cohomology sheaves in (5.29), we will make use of a
result due to Kostant [6]. Let ) be a Cartan sub-algebra of g, which we may take
to be contained in .. Let ¥ denote the set of roots for g¢ relative to . Let ¥,
denote the set of compact roots, i.e., the roots o for which the associated }
eigenspace g, < g¢ is contained in f¢; let ‘¥, denote the set of complementary
(non-compact) roots. It is possible to choose the positive Weyl chamber in h* so
that for the set of positive complementary roots ¥, |

pt = @, -

aec¥)

Then
qg=Ffdp"

is a parabolic subalgebra of g¢, with p™ its nilpotent radical, and f; a Levi
subalgebra of q. We also define ¥*, ¥, and ¥{ in the obvious way. Then for
our set-up, the theorem of [6] states :

(5.31) TueoreM (Kostant). For a dominant integral weight A eb*, let V,
be the irreducible representation of G with highest weight A.  Then as a
representation of K,

we Wul(q)

H? (p+, Vi) = @ E,a+8)-5

where o = 15 Y, o, Eg is the representation of K with highest weight B,

aew ™t

and W, (q) denotes the subset of the Weyl group for by consisting of those
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clements w which move exactly q elements of W~ into ¥;, but no
elements of W~ into W¥{.1)

(5.32) COROLLARY. #?% is a holomorphic vector bundle with fiber isomorphic
to
Duwew,, @) Ewrrs-5 <A — kp> .

Since Eis an irreducible representation of K, the subgroup A of K acts with a
single character y,, (g, Which may be determined from the highest weight itself. In
fact, it is clear that B n (B) extends to a linear functional on h*, given by
evaluation on a uniquely determined element of 3. (This point will also be used in
the discussion of vanishing theorems at the end of this section.) Therefore, we
may rewrite the terms in the formula of (5.32) as
{ EW(A+5)—5 lf K—— ku. - n[W(A+6)—8]

E,ia+5-5 <h — kp> = ,
0 otherwise .

(5.33) Example. In the case G = SL(2,R), ¥, = @, b is one-dimensional,

and the highest weights can be identified with the non-negative integers. Let V,,
= Symm™ (C?), and let p,, be the corresponding representation of G. Then p,
~ Ad, so under the identification with integers, & = 1. Moreover, the Weyl
group decomposes as the identity element I in W, (0),and —Iin W, (1). Thus, we
obtain

H°(Grk Q5 (V) = E, <m — 2k >
'}?l (Gr‘lf‘ Q:S' (Vm)) = E—m—Z <m—2k> ’

as 0 = 2. But for SL (2, R), Z = K, and therefore

E, if n=m

E,<n> = _
{0 if n#m.

Inserting this above, we see that Grk Q% (V,,) is acyclic except for k = 0 (where
H° #0)and k=m+ 1 (where #! # 0); this yields the Shimura
isomorphism, cf. [11, (12.14)]. -

The above gives rise to an interesting approach to cohomology vanishing
theorems for real representations, like those of [8, Thms. (8.2), (12.1)]—there,
however, no realness hypothesis is imposed on the representation. The idea is

1_,) U, W (q) is a set of representatives for the Weyl group of gc modulo that of f,
consisting of those elements which keep the positive chamber for g inside the larger
positive chamber for f.
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relatively simple: if cohomology occurs in multi-degree (p, q; k, m—k), then (by
conjugation) it must also occur in multi-degree (g, p; m—k, k).

(5.34) PROPOSITION. Let A be the highest weight of the real representation
(p, V) of the group G. Then a necessary condition that H”4(S,V) # 0 is
that there exist w, e W,(p) and w,e W, (q) such that n[w,A + w,A]
= [,

Proof. By (5.32),
HPa:k=pm+p=b)(§ V) ~ HI(S, #F) = 0

unless there exists w; € W, (p) with

(5.35) niw, (A+6)—0o] = A — k.
(Note that . = n(A)and p = n (E), where E denotes the highest weight of Ad.)
Similarly, for the conjugate term
HOPh 2=k k) (S, V) o HP (S, #% 1 pq )

to be non-zero, we must also have for some w, € W, (q)

(5.36) nw, A+8)—8] = A — (m+p+q—Fk p.
Adding (5.35) and (5.36), we see that
dim H? (S, #7) = dim H? (S, #% ., 4q-) = O

‘unless there exist w, € W, (p) and w, € W, (q) such that

(537 n[w; (A+3)—38] + n[wy, (A+8)—38] = 21 — (m+p+q) p.

We use the identities

n[6—wd] =qu if weW,(q),
2L = mp
to rewrite (5.37) as
(5.38) n[w,Al+ n[w,A] =0,

or
n[wA+ w,Al = 0.
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Letl = ) pep + o Itiseasily checked that under the isomorphism h* ~ b via

the Killing form, { represents a non-zero element of 3. Thus, the condition (5.38)
can be rewritten as
<wA, (> + <wyA, 0> =0,

or
(5.39) <A,wi'l+w;'(> =0.
We are discussing real representations, for which woA = —A (by self-

contragredience) with w, denoting the (unique) element of the Weyl group which
maps ¥+ to W It suffices then to examine the sums

wl_lC—wsz_lﬁ w, e W, (p),w,e W,(q).

For instance, the assertion that H”4(I'; p, V) = 0if p + g% dim S and A lies
in the interior of the dominant cone [8, Thm. (12.1)] would follow from the
corresponding statement: w;'{ — wow; ' { is a non-zero element of the
positive dual cone for allw, € W, (p)and w, € W, (q) wheneverp + g < dim S.
This has been verified by the author in some examples, though no satisfying
argument involving root structure has been found.

Added in proof: Borel has pointed out that although there was a gap in the
proof of Theorem 4 of [13], it has been filled in by W. Casselman in the case
where the ranks of G and K are equal. This includes all Hermitian cases.
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