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236 J.-C. HAUSMANN

inclusions est injectif (avec ¢ (x) = z~!xz). D’autre part, d’aprés (2.4), G est
engendré par
G,URy,,ouR,, ={reG|ilexistea, e ArT

avec o(a)ef{uv}ete(@)er{uv}}.

Soit r € R, ,,. Comme toutes les arétes de I sont dans la méme orbite, il existe
d, € G tel que a, = d,a. On a donc

dv = dzue {ru,rv}.
Sio(a) = u,ona
deG,etela)=r,=4dv,

d’ou

T T T Y N e L S

d"'reG, = zG,z"'.

r

Sio(a,) = v,ona

z7 ldeG,ete(z la) =z dv =z rv,

d’ou encore d_ 're G, = zG,z™ 1. Dans tous les cas on déduit donc que r est |
dans le sous-groupe engendré par G, et z, d’ou la surjectivité de V. B

6. STRUCTURES BIPOLAIRES

Rappelons qu’une structure bipolaire sur un groupe G est une partition de G
en cing sous-ensembles F, EE, E*E, E*E* et EE* satisfaisant aux axiomes 1)a 6) |
ci-dessous, avec les conventions suivantes : Si A et B sont deux sous-ensembles de
G, on définit ’ensemble

AB = {g = abeG|lacA et beB}

et '’ensemble
At ={geG|lgled}.

[ e e R e i i SO S S I

Si X € { E, E*}, alors (X*)* = X .
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Axiomes d’une structure bipolaire:

1) F est un sous-groupe de G
Pour tout X, Y, Z, X;e { E, E* } on a:

2) (XY)F < XY.

) (XY) ' < YX.

4) (XY)(Y*Z) = XZ.

) Pour tout g€ G, il existe un entier n(g) tel que si g = g9, ... gx avec
g;e X* X, pouri > 1, alors k < n(g).

6) E*E # Q.

Cette définition d’une structure bipolaire est la généralisation due a Lyndon-
Schupp [L-S, IV.6] du fameux concept de Stallings [St]. Remarquons que dans
cette version, on ne demande pas que F soit un sous-groupe fini.

(6.1) THEOREME. Soit G un groupe agissant sur unarbre I'. Soit pe G
un élément ne laissant aucun sommet fixe. Alors G admet une structure bipolaire
avec pe E*E u EE*.

Démonstration. Puisque p ne laisse aucun sommet fixe, il existe, par (3.3),
une chaine infinie C, stable par p et sur laquelle p opére par translation non-
triviale. On peut supposer qu’il existe a € Ar C,, telle que pa € 4 (a). Si ce n’est
pas le cas, on change p en p~!, ce qui na pas d’importance puisque
pe E*E U EE* si et seulement si p~! € E*E U EE* par I'axiome 3.

On définit alors F = G, et les autres ensembles sont déterminés par les
conditions suivantes:

he EE U EE* < haec Z (a)
he EE* U E*E < d (0 (a), o (ha)) = d (e (a), e (ha))

ce qui peut se visualiser de la maniere suivante:

r € EE ra /‘/t;‘/-
s € EE* TR o T

t € E*E sa_-~ T va
ue E*E* - \
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Il est clair que 'on a ainsi une partition de E. Les axiomes 1 et 2 sont banals.
L’axiome 3 se vérifie par inspection facile des huit cas possibles. Par exemple,
pour (EE) (E*E) < EE,soitg € E*E et h € EE. On utilise le principe que hga est
relié a ga comme ga est reli€ 4 a, ce qui donne la figure suivante d’ou 'on déduit
que hg € EE: (

La vérification de ces huit cas montre que si he XY et ge Y*Z, alors
d (hga, a) > d (ga, a),

ce qui permet de vérifier 'axiome 5 en posant n(g) = d (ga, a). Enfin, p € E*E,
d’ou 'axiome 6. [ |

(6.2) COROLLAIRE. Un groupe de génération finie qui agit sur un arbre T
sans sommet fixe (i.e. (Som IN® = @) admet une structure bipolaire.

Démonstration. Par [Se, Cor. 3, p. 90], il existe un élément g € G qui ne
laisse aucun sommet fixe. On applique alors (6.1). B

Nous allons maintenant donner notre démonstration du théoréme de
Stallings-Lyndon-Schupp:

- (6.3) TuforEME. Un groupe G admet une structure bipolaire si et
seulement si G est un produit amalgamé non-trivial ou une HN N-extension.

Démonstration. Si G est isomorphe a B, *, B, (respectivement: si G est
isomorphe a HNN (H, A, ¢)), alors il existe un arbre I" sur lequel G agit de telle
maniére que les groupes d’isotropies des sommets soient les conjugués des B;
(respectivement : les conjugués de H) et les groupes d’isotropie des arétes soient
les conjugués de A (voir [Se, pp. 49-50 ou § 5]). Tout élément qui n’appartient
pas 4 'un de ces conjugués agit donc sur I" sans sommet fixe, d’ou G, par (6.1),
peut étre muni d’une structure bipolaire (F, EE, ..) avec 4 = F.

La démonstration de la réciproque nécessite quelques préliminaires. Par
définition, un élément g € XY est dit irréductible si g # ab, avec ae€ XZ et
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be Z*Y. L'ensemble des éléments irréductibles de XY est noté I (X'Y). Nous
avons besoin des lemmes classiques sur les éléments irréductibles sous une forme
1égérement plus précise que celle de [L-S, p. 209], aussi nous les redonnons ci-
dessous complétement avec leur démonstration.

LemMe 0. 1(XY) ! < I(XY).

Démonstration. Soit geI(XY). On a g~' e YX par l'axiome 3. Si g~ !
— abavecae YZetbe Z*X,alorsg = b la ' € (XZ*) (ZY) par 'axiome 4,
ce qui contredit I'irréductibilité de g. |

LeMME 1. (XY)I(YZ) = F u XE u XE* en gén¢ral et

(XY)I(YZ) =« XEu XE* si X # Z.
Démonstration. Soitge XY et heI(YZ). Sighe X*U, alors
heg ! (X*U) c (YX)(X*U)
ce qui contredit 'irréductibilité de h. Si gh = f € F, alors
YZ hfl=gleYX

par les axiomes 2 et 3, dou X = Z. [ |

LEMME 2. I(XY)(YZ) =« F u EZ v E*Z en général et
[(XY)(YZ) < EZUE*Z si X#Z.

Démonstration. Identique a celle du lemme 1. [ ]

LEMME 3. I(XY)I(YZ) =« F U 1(XZ)en général et
I(XYI(YZ)cI(X2) si X #Z.

Démonstration. Aprésleslemmes 1 et 2, il suffit de montrer quesig € I (XY)
et he I (YZ), alors gh est irréductible si gh & F (ce qui implique que gh € XZ).
Supposons que gh = pg,avecpe XWetqe W*Z, doug = pgh™'. D’aprés le
lemme 1, gh~ ! appartient soit 8 W*U, ce qui contredit I'irréductibilité de g, ou
alors gh~! € F, mais ceci nécessite que W = Y*. Dans ce dernier cas, on aurait

g=plgh He(XY*F c XY*

par Paxiome 2, d’ou g € XY* n XY ce qui est impossible puisque XY* n XY
= Q. | n




240 J.-C. HAUSMANN

LeMME 4. [ (XY)F U FI(XY) < [ (XY).

Démonstration. Sigel(XY)et f e F,alorsgf e XY par'axiome 2. Sigf
= pqavecpe XWetge W*Y, on auraitg = p(qf ') e (XW) (W*Y) ce qui
contredit l'irréductibilité de g. D’ou I(XY)F <= I(XY), ce qui entraine
g~ 'f~!'el(YX)parlelemme 0 et 'axiome 1. Cela implique fg € I (XY) par le
lemme 0 et donc FI (XY) = I (XY). [ ]

Voici encore un lemme qui ne semble pas se trouver dans la littérature:

LEMME 5. I (XW)(W*Y)n I (XW*)(WY) = Q.
Démonstration. Supposons que gu = hv, avec
gel (XW),ue W*Y, hel (XW*) et ve WY.
Alors, les lemmes O et 3 ainsi que 'axiome 4 entrainent que

WY 3= (h ‘g)uel (W*X)I(XW)(W*Y)
< [ (W*W) (W*Y) ¢ W*Y

ce qui est impossible puisque WY n W*Y = Q. ]
Nous pouvons maintenant poursuivre la démonstration de (6.3). L’axiome 2
montre que la partition (F, EE, ..) de G induit une partition en cing sous-

ensembles { 1 }, EE, E*E, EE* et E*E* de ’ensemble G/F des classes a gauche de
G modulo F.

Soient B, = F U I(EE) et B, = F u I (E*E*). L’axiome 1 ainsi que les
lemmes 0, 3 et 4 impliquent que B; est un sous-groupe de G. On a donc un
homomorphisme ¥: B,*:B, — G qui étend les inclusions de B; dans G.

Affirmation : ¥ est injectif. Cela se démontre en appliquant le critére (4.1) a la
situation:
X = GJF, d=1,

Ly = EE UEE* L, = E*E U E*E*

La condition 1 de (4.1) est banale et la condition 2 se vérifie facilement:

(B;—F)E*X < (EE)E*X < EX < L, (axiome 4).

Idem pour (B,—F)) (L, v {d}) < L,.

L’axiome 5 entraine que G est engendré par les éléments irréductibles. Donc,
sil’onsuppose que I (E*E) = (D, celaimpliqueque I (EE*) = @ parlelemme0
et ¥ est surjectif. On a donc G = B;*:B, et Paxiome 6 empéche que F = B;
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(donc le produit amalgamé est non-trivial). En effet, si par exemple F = B, alors
G = F U EE ce qui est impossible puisque E*E # Q.

Il reste a examiner le cas ou I (E*E) # (.Soitdoncz € [ (E*E) et posons H
= B;. On a, par les lemmes 3 et 4:

z VI (E*E) < I (EE*) I (E*E) < H
I(EE*) z I (EE*)I(E*E) = H
z VI (E*E*)z < I (EE*) I (E*E)I (EE) = H

ce qui montre que G est engendré par z et H (puisque I'on a déja vu que G est
engendré par les éléments irréductibles). D’autre part, par les lemmes 3 et 4, on a

z7'Fz < I(EE¥)I(E*E) c H.

¥ Soit ¢: F —» H I’homomorphisme injectif défini par ¢ (x) = z~ !xz. On a donc
B un homomorphisme{: HNN (H, F, ) — G qui étend I'inclusion de H dans G et
. qui est surjectif. On va démontrer 'injectivité de { en appliquant le critére (5.1) a
;' | la situation:

X=GF d=1
Lp = EE UEE* L, = E*E U E*E*

Il faut vérifier les conditions 1 a 6 de (5.1):
Point 1). Banal.

Point 2). (H—F)E*X < (EE) E*X < EX (axiome 4).

Point3). ObservonsquezHz ™! < I (E*E) U F par les lemmes 3 et 4. Mais
sizhz™' e F avec he H, alors he z7'Fz = ¢ (F). Donc

z(H—¢ (F))z~ ' < E*E*,
et le point 3) se démontre comme le point 2).

Point 4). Se démontre comme le point 2).

Point 5). L’axiome S implique que
EX = I (EE) E*X U I (EE® EX .
Or I (EE*) z < H par le lemme 3, d’ou I (EE*) < Hz~!. On a donc

z(EX) = zI (EE) (E*X) U zHz ™! (EX).

Par le lemme 3, on a

zI (EE) (E*X) < I (E*E) I (EE) (E*X) < E*X c L.
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Soit x = hz™'v avec he H et v e EX. Par les lemmes 3 et 4, on a

zhz ' eI (E*E*) U F .

Sizhz™!' eI (E*E*),onaurazx € E*X < L, par 'axiome 4. Or, ce dernier cas se
produit toujours si x%& z 'Ly, puisque si zhz 'eF, on a hez 'Fz et
xez ‘F(EX) < z7'EX < z 'L, (le fait que F(EX) c EX provient des
axiomes 2 et 3). Idem pour la seconde partie du point 5.

Point 6 ).

(H—F)E*X nz 'EY < I(EE) E*X
A I(EE¥YEY = @

par le lemme 5. Idem pour la seconde partie du point 6), en utilisant le fait vu au
point 3) que z(H—¢ (F)) z~! = I (E*E¥).

BIBLIOGRAPHIE

[Du] Dunwoobpy, M. J. Accessibility and groups of cohomological dimension one.
Proc. London Math. Soc. 38 (1979), 193-215.
[F-K] Frickg, R. und F. KLEIN. Vorlesungen iiber die Theorie des Automorphen

Functionen, Vol. 1. Leipsig 1897.

[L-S] LynDoN, R. and P. ScHUPP. Combinatorial Group Theory. Springer-Verlag 1977.

[Le] LEHNER, J. Discontinous Groups and Automorphic Functions. Providence, Amer.
Math. Soc. 1964.

[Se]  SERRE, J.-P. Arbres, Amalgames, SL,. Astérisque N° 46, 1977.

[St] STALLINGS, J. Group Theory and Three-dimensional Manifolds. Yale University
Press, 1971.

[S-W] Scortt, P. and C. T. C. WaLL. Topological methods in group theory. In
“Homological group theory”, Proc. Conf. Durham 1977, London Math. Soc.
Lect. Note Series 36 (1979), 137-204.

[Ti]  Tits, J. Sur le Groupe des Automorphismes d’un Arbre. Essays on Topology and
related Topics (dédi¢ & G. de Rham), Springer-Verlag 1970, pp. 188-211.

[Ti2] —— Free Subgroups in Linear Groups. J. of Algebra 20 (1972), 250-270.

(Regu le 15 aotit 1980)

Jean-Claude Hausmann

Université de Geneve
Case postale 124
1211 Genéve 24 (Suisse)



	6. Structures bipolaires

