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Démonstration. L'homomorphisme est injectif par (4.3). Pour démontrer
la surjectivité de *F, on observe que l'arête a se projette sur l'unique arête ä de

G\r, ce qui entraîne que B { u, v } est un ensemble de représentants pour
l'action de G sur Som T. La proposition (2.4) assure alors que G est engendré par
Gu u Rb, avec RB { r e G | il existe sr e Ar T telle que o (sr) e Bete (sr) e rB }.
Soit r e Rb. Comme toutes les arêtes de T sont dans l'orbite de a, il existe hre G

tel que sr hra. De plus, o (sr) o (a) u, d'où hr e Gu. Donc e (sr) rv
hrv, d'où h'1 r e Gv. On en déduit que G est engendré par Gu u Gv,, d'où la

surjectivité de x¥.

5. Critère pour les #7V7V-extensions

Soit F un sous-groupe d'un groupe H. Soit <j) : F - H un homomorphisme
injectif (un autre plongement de F dans H). Désignons par < z > le groupe
cyclique infini de générateur z. Rappelons que l'on définit le groupe
HNN {H, F, (j>) comme le quotient du produit libre H * < z > par la clôture
normale des éléments z_1/z 4> (/)_1 pour / e F. On dit que le groupe H*

HNN (H, F, c|)) est obtenu de H, F et (j> par la construction HNN. Le groupe
H s'appelle la base de H*, z s'appelle la lettre stable et F et cj) (F) sont les sous-

groupes associés [L-S, Chap. IV, § 2]. Nous allons démontrer le critère suivant

pour reconnaître une HNN-extension dans un groupe :

(5.1) Théorème Soit G un groupe, F c H c= G des sous-groupes de

G et zeG tel que z-1 Fz a H. Désignons par $.F^>H
rhomomorphisme <|> (/) z_1/z- On suppose que G agit sur un ensemble

X et qu'il existe des sous-ensembles LF et L^ de X ainsi qu'un élément

de X — (LF u L^) satisfaisant aux conditions suivantes : (notation : LF

LF { d } { d })

1) F cz Gd

2) (H — F) c= LF

3) Z(H-MF))2-TfcLt
4) z'1Lf a Lfet zLç cz Lç
5) z (LF — z~lLF)c Lçet z"1 (L^-zLJ
6) (H-F) n z"1 LP 0 et z (//-<)) (F)) z"1 n zL,,, 0
A/ors, Vhomomorphisme ¥ : HNN (H, I\ (J)) -> G induit par les inclusions (avec

z comme lettre stable) est injectif.
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Démonstration. Soit H* HNN (H, F, En utilisant les relations fz
zcj) (F) et z-1/ (/) z_ 1

pour / 6 F, on peut écrire un élément g eH sous

la forme g - g1f avec / g F et

0i K zE(k) hk_1z8(k-1)...h1z,(1^o (*)

où ht g H et s (0 ± 1, de manière que les conditions suivantes soient vérifiées :

a) h0 e (H — F) v { l }

b) si 8 (0 -1, alors ht g (FF — <(> (F)) u { 1 }

c) si s (0 1, alors ht e (H —F) u { 1 }

d) il n'y a aucune suite zEl z_E.

Si (g) 1 et que g i 1, cela implique que ^ ^ 1 puisque | F est

l'inclusion F c G. Or, si 0! ^ 1, nous allons montrer que (g) d i d. Il suffit

pour cela de montrer que (04) d # d, puisque *¥ (f) d d par l'hypothèse 1).

Décomposons l'écriture (*) de gl en un produit wrwr_i... w0 de sous-mots

tels que :

wo hk (0) zhk (0)-1 z zh0

sous-mot maximal ne contenant pas de symbole « z-1 »

Wi Km-iZ"1 Z"1 hk(0)+1z-1
sous-mot maximal ne contenant pas de symbole z1.

W2 ^k(2) Zhk(2)-l Z — Z^fc(l)+1 Z

sous-mot maximal sans symbole z ~~1

etc., avec k (r) k. Observons que par maximalité de wf, le mot w27- commence à

droite par z (sauf w0) et le mot w2j+1 commence à droite par z"1. Il est possible
que/c 0 ; il est aussi possible que w0 1, mais alors wx i 1 puisque g1 i 1.

Pour alléger la présentation, nous écrirons gxd, wtd, etc., à la place de (gj d,

(wf) d, etc. Le fait que g^d i d va résulter des assertions (A) à (F) suivantes :

(A) WqL^ ci Lf kj L^ si w0 i 1

(B) a Lf si w0 i 1 et ri- 0

(C) w2j— \Lp cz Lp u Lç si vv2j-i i 1

(D) zw2j_1Lf c: si w2j~i i 1 et f i 2j—l
(E) w^z-1^ a Lfkj si w2j- # 1 0'> 1)

(F) ci Lf si w2j i- 1 et ri 2j. (j ^ 1)
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Pour tirer l'inéquation g^d # d des assertions (A) à (F), il suffit d'écrire gq

sous la forme

g1 (w4z"1)(zw3)(w2z"1)(zw1) w0

et l'on déduit que g^deLp u L^

Preuve de (A), (B), (E) et (F). On a déjà observé que si j ^ 1, le mot
wzj commençait à droite par z. Le mot w2jz-1 commence donc par

hki2j.1) + 1e(H-F) u{l}s
ce qui fait que la démonstration de (E) et (F) est identique à celle de (A) et (B) que
nous allons donner: si h0 1, on a h0L^ cz LF ~ z~1LF par les hypothèses 2)

et 6). Ensuite zh0L^ cz z (LF — z~1LF) cz par 5). Si h0 1, on a zL^ cz

par 4), donc de toute façon on a zh0L^ cz L^. Si hx 1, on aura zzh0L^ cz zL^.
On voit qu'en continuant, on aura à chaque pas à appliquer l'une des hypothèses

c= Lp z 1Lp z (Lp z Ep) c= et zL^ cz L^

Il s'en suit l'assertion (A). Si r / 0, cela signifie que uq # 1 et donc hk{0) ^ 1,

puisqu'on a la suite z_1/zM0)z. Dans ce cas, w0L^ cz hk(0)L^ cz LF.

Preuve de (C) et (D). On utilise l'hypothèse 4) z ~1LF cz LF tant que l'on ne

rencontre que des ht égaux à 1. Dans la situation h(z~1 avec ht # 1 (donc ht e H
— c}> (F) par b)), on procède comme suit: hiz~1LF z~1 (zhtz~l) LF. Or
zh(z~ 1Lp cz — zL^ par les hypothèses 3) et 6), d'où htz~1LF cz z"1 (L^ — zL^)
cz Lp par 5). De proche en proche on démontre ainsi (C). Si r =£ 2j — 1, cela

signifie que w2j ¥= 1 et donc hk (2j-^ 1 puisqu'on a la suite z/zfc(2j_1) z-1. On a

alors affaire à la situation

zw2j-_ xlFC: ZZ"1 zhk(2j-_D z"x) <= L* zLç. m

(5.2) Remarque. Il résulte de la démonstration de (5.1) que les hypothèses
de (5.1) peuvent être affaiblies de la manière suivante : on choisit un ensemble RF

(respectivement R^) de représentants de classes à gauche non-triviale de H
modulo F (respectivement : modulo cj> (F)). On peut alors remplacer dans les

hypothèses 2), 3) et 6) (H —F) par RF et (Fl — fy (F)) par R^

(5.3) Corollaire. Soit G un groupe agissant sur un arbre F. Soit

a g Ar r avec o(a) u et e (a) v. Supposons qu'il existe z e G tel que

o(za) v. Alors z'^-G^ cz Gu, ce qui définit un homomorphisme injectif
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<j) ; Ga -> Gu (par <|) (x) z 1xz) et rhomomorphisme *F:: HNN (Gu, Ga, <())

-> G gui étend les inclusions est injectif.

Démonstration. Le fait que z_1Gaz c Gu provient simplement de

l'inclusion Ga c Gv Gzu zGuz_1.

Soit f le premier subdivisé barycentrique de T (voir démonstration de (4.3)

pour les notations). On va appliquer le critère (5.1) à la situation:

X Som f, H Gu, F Ga G(u> a) G(fli

Lf Som ^ (m, a) Som ^ (a, v) d a a Som T

Le lecteur pourra donc visualiser la situation en utilisant la figure 7 de la

démonstration de (4.3) en changeant Ll en LF et L2 en L^. Nous allons vérifier les

points 1) à 6) de l'énoncé de (5.1).

Le point 1) est banal. Le point 2) provient du fait que H —F Gu — Ga et le

point 3) de ce que z (H — 4> {F)) z~1 Gv — Ga. Le point 4) se déduit de ce que

e (z~1 (a, u)) — u et o (z (u, a)) v

Point 5). L'ensemble z (LF — z~lLF) constitue les sommets d'un sous-arbre
relié à v par l'arête t z (u, a). Or t # (a, v) car o (t) i; et e (a, f) p. Donc
z (Lf — z~1Lf) c= L^. Même raisonnement pour l'autre inclusion de 5).

Point 6). Soit h e H — F. Le sous-arbre 4 dont l'ensemble de sommets est

/iL^ est relié à u par l'arête h (u, a), tandis que le sous-arbre B de t dont l'ensemble
de sommets est z" 1LF est lui relié à u par l'arête z"1 (a, v). Or, ces arêtes h (u, a) et

z "1 (a, v) sont distinctes puisque

u o(h (u, a)) e (z~1 (a, p)).

Donc A n B ~ 0. Même raisonnement pour la seconde partie du point 6).

Nous sommes maintenant en mesure de démontrer l'énoncé suivant, dû à

Bass-Serre [Se, p. 50 et aussi § 5].

(5.4) Corollaire. Soit G un groupe agissant sur un arbre T, de

manière que le graphe quotient G\F soit un lacet (graphe comportant
exactement un sommet et une arête). Soit a e Ar T. Alors G est isomorphe à

une HNN-extension de base G0 {a) et dont l'un des sous-groupes associés est Ga.

Démonstration. Posons u o (a) et v e (a). Puisque Som G\T { u },
il existe z g G tel que zu p. On en déduit, d'après le Corollaire (5.3) que z~xGaz

ç Gu et que l'homomorphisme : HNN (Gu, Ga, cj>) —> G qui induit les
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inclusions est injectif (avec <j) (x) z 1xz). D'autre part, d'après (2.4), G est

engendré par

Gu u R{UjV}, où R{UtV} { r g G | il existe ar e Ar T

avec o (ar) g {u,v} et e (ar) e r { u, v }}

Soit r g R{u,v}- Comme toutes les arêtes de T sont dans la même orbite, il existe

dre G tel que ar dra. On a donc

drv drzu g {ru, rv}

Si o (ar) u, on a

dr g Gu ete (ar) rv drv

d'où jj

d'1 r g Gv zGuz~1 ||

Si o (ar) v, on a il

z~1drGGu et ^(z_1ar) z~1drv z~^rv ji

d'où encore d~rr g Gv zGuz~x. Dans tous les cas on déduit donc que r est jj

dans le sous-groupe engendré par Gu et z, d'où la surjectivité de H*. ji

6. Structures bipolaires |

j:

Rappelons qu'une structure bipolaire sur un groupe G est une partition de G j

en cinq sous-ensembles F, EE, E*E, E*E* et EE* satisfaisant aux axiomes 1) à 6) j

ci-dessous, avec les conventions suivantes : Si A et B sont deux sous-ensembles de f

G, on définit l'ensemble j

AB {g ab gG\ügA et bGB] |

et l'ensemble |

A'1 {geG | g'1 g A }. I

Si X g {E,E* }, alors (X*)* X
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