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232 J.-C. HAUSMANN

Démonstration. L’homomorphisme W est injectif par (4.3). Pour démontrer
la surjectivité de ¥, on observe que 'aréte a se projette sur I'unique aréte a de
G\I', ce qui entraine que B = { u, v } est un ensemble de représentants pour
'action de G sur Som I'. La proposition (2.4) assure alors que G est engendré par
G, U Rg,avec Ry = {re G|ilexistes, € Ar I'tellequeo (s,) e Bete(s,) erB }.
Soit r € Rg. Comme toutes les arétes de I" sont dans I'orbite de a, il existe h, € G
tel que s, = h,a. De plus, 0(s,) = 0(a) = u, d’ou h,e G,. Donc e(s,) = rv
= h,, dou b ! r € G,. On en déduit que G est engendré par G, U G,, d’ou la
surjectivité de V. ]

5. CRITERE POUR LES H N N-EXTENSIONS

Soit F un sous-groupe d’un groupe H. Soit ¢: F - H un homomorphisme
injectif (un autre plongement de F dans H). Désignons par < z > le groupe
cyclique infini de générateur z. Rappelons que l'on définit le groupe
HNN (H, F, ) comme le quotient du produit libre H * < z > par la cloture
normale des éléments z7'fz ¢ (f)"! pour f € F. On dit que le groupe H*
= HNN (H, F, ¢) est obtenu de H, F et ¢ par la construction HNN. Le groupe
H s’appelle la base de H*, z s’appelle la lettre stable et F et ¢ (F) sont les sous-
groupes associés [ L-S, Chap. 1V, § 2]. Nous allons démontrer le critére suivant
pour reconnaitre une HN N-extension dans un groupe:

(5.1) THEOREME Soit G un groupe, F <« H = G des sous-groupes de
G et zeG tel que z71 Fz c H. Désignons par ¢:F - H
Phomomorphisme & (f) = z~'fz. On suppose que G agit sur un ensemble
X et quil existe des sous-ensembles Ly et L, de X ainsi qu'un élément
de X — (Lp v L) satisfaisant aux conditions suivantes: (notation: Ly
=Lyu{d}L,=L,u{d})

1) F c G,
2) (H-F)L, < Ly

3) z(H—0(F)z 'Ly < L,

4 z7 'Lpc Ly e zL,c L,

5 z(Lg—z L) = I, et z '(Ly—zLy) < Lg

6) H-F)L,nz 'Ly=Q¢ e z(H-¢6F)z 'LinzL, =@

Alors, Thomomorphisme W¥: HNN (H, F, d) —» G induit par les inclusions (avec
z comme lettre stable) est injectif.
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Démonstration. Soit H* = HNN (H, F, ¢). En utilisant les relations fz
— zd (F)etz 1f = ¢ (f) z " pour f € F,on peut écrire un élement g € H sous
laforme g = g,f avec f e F et

- *
gl = hk Za (k) hk—l Za (k=1) _— hlze(l) ho ( )
ouh;e Hete (i) = + 1,demaniére que les conditions suivantes soient vérifiées :

hoe(H—F)u {1}
si () = —1,alors e H—¢(F)u{l}
si €() =1,alors e H-F)u{l}

€

il n’y a aucune suite z°1 z~°

g o g &

Si ¥(g9) = 1 et que g # 1, cela implique que g; # 1 puisque V¥ | F est
Pinclusion F < G. Or, si g, # 1, nous allons montrer que ¥ (g) d # d. Il suffit
pour cela de montrer que ¥ (g,) d # d, puisque ¥ (f) d = d par ’hypothese 1).

Décomposons I’écriture (*) de g, en un produit w,w,_; ... wo de sous-mots
tels que:

WO — hk (0) th (0)—1 Z s Zho

sous-mot maximal ne contenant pas de symbole « z7*

»

-1 -1

_ — 1 -1
Wl = hk(l)z hk(l)_lz von L hk(0)+12

sous-mot maximal ne contenant pas de symbole z'.

W2 —_ hk (2) th 2)—1 Z i th(1)+1 zZ

sous-mot maximal sans symbole z~?

etc.,aveck (r) = k. Observons que par maximalite de w;, le mot w,; commence a
droite par z (sauf wg) et le mot w,;, ; commence a droite par z~*. Il est possible
que k = 0;1l est aussi possible que w, = 1, mais alors w, # 1 puisque g, # 1.

Pour alléger la présentation, nous écrirons g,d, wid, etc.,ala placede ¥ (g,) d,
¥ (w)) d, etc. Le fait que g,d # d va résulter des assertions (A) a (F) suivantes:

(A) wol_,:b cLpulL, si wy,#1

(B) woL, = Ly si wo#1 et r#0

(C) wyjoyLpc LeU Ly, si wy_y #1

(D) zw,;_ Ly = L, si wyog # 1 et f #2j—1
(B) wyz 'Ly« Lru Ly si wy; # 1(G.>1)

(

)
F) wyz7'Lyc Lp si wy; #1 et r#2.(G=1)

J
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Pour tirer I'inéquation g,d # d des assertions (A) a (F), il suffit d’écrire g,
sous la forme

g1 = . (Waz™ ") (zw3) (Woz ™) (zwy) wo

et 'on déduit que g;d € Ly U L,

Preuve de (A), (B), (E) et (F). On a déja observé que sij > 1, le mot
w,; commengait a droite par z. Le mot w,;z~ ' commence donc par

hk(2j—1)+1 e(H-F)u { 1 } s

ce qui fait que la démonstration de (E) et (F) est identique a celle de (A) et (B) que
nous allons donner: si hy # 1, ona hyL, = L,— z~ 'L par les hypothéses 2)
et 6). Ensuite zhoL, < z(Lg—z 'Lg) < I, par 5). Si hy = 1, on a zL, = L,
par 4), donc de toute fagon on a zhyL, < L, Si h, = 1, on aura zzh,L, < zL,.
On voit qu’en continuant, on aura a chaque pas a appliquer I'une des hypothéses

hl.l_d¢ C LF'—Z_ILF, Z(LF—Z_ILF) - L¢ Ct Zl_4¢ c L¢ .

Il s’en suit I'assertion (A). Sir # 0, cela signifie que w, # 1 et donc hy ) # 1,
puisqu’on a la suite z~ 'k, ,z. Dans ce cas, woL, = hy o)Ly < Lp.

Preuvede (C)et (D). Onutilise 'hypothése4)z 'L, = Ltantquel’onne
rencontre que des h; égaux a 1. Dans la situation h;z~ ' avec h; # 1(donc h; e H
— ¢ (F) par b)), on procéde comme suit: hz 'Ly = z7 ' (zh;z" ') Ly. Or
zhiz'lf,F < L, — zL,parles hypothéses 3)et 6),d’oth;z" 'Ly < z7* (L,—zL,)
< Ly par 5). De proche en proche on démontre ainsi (C). Sir # 2j — 1, cela
signifie que w,; # letdonch, ;- ;) # 1 puisqu’onalasuitezh, ,;_;,z"'.Ona
alors affaire a la situation

zWy;_1Lp © 227 Y (zhy 3j- 1y 27 ') Ly © Ly — zL,, ]

(5.2) Remarque. 1l résulte de la démonstration de (5.1) que les hypothéses
de (5.1) peuvent étre affaiblies de la maniére suivante : on choisit un ensemble Ry
(respectivement R,) de représentants de classes a gauche non-triviale de H
modulo F (respectivement: modulo ¢ (F)). On peut alors remplacer dans les

“hypothéses 2), 3) et 6) (H—F) par Ry et (H— o (F)) par R,

(5.3) COROLLAIRE. Soit G un groupe agissant sur un arbre I'. Soit
acArT" avec o(a) = u et e(a) = v. Supposons qu’il existe ze G tel que
o(za) = v. Alors z 'G,z = G, ce qui définit un homomorphisme injectif
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b:G, » G, (par & (x) = z~'xz) et lhomomorphisme ¥:: HNN (G,, G, P)
— G qui étend les inclusions est injectif.

Démonstration. Le fait que z 'G,z < G, provient simplement de
linclusion G, < G, = G,, = zG,z™ ..

Soit I" le premier subdivisé barycentrique de I' (voir démonstration de (4.3)
pour les notations). On va appliquer le critere (5.1) a la situation:

X - Som r, H —= Gu, F == Ga == G(u,a) - G(a,v)
Ly = Som # (u,a) L, = Som#(a,v) d=acSomT

Le lecteur pourra donc visualiser la situation en utilisant la figure 7 de la
démonstration de (4.3) en changeant L, en Ly et L, en L. Nous allons vérifier les
points 1) & 6) de I’énoncé de (5.1).

Le point 1) est banal. Le point 2) provient du fait que H—F = G,—G,etle
point 3)dece quez (H—¢ (F)) z~' = G, — G,. Le point 4) se déduit de ce que

e(z_l(a,v)) =u et o(z(w,a) =v.

Point 5). L’ensemble z (Lp—z~ !L;) constitue les sommets d’un sous-arbre
relié a v par arétet = z(u,a). Ort # (a,v)caro(t) = vete(a,v) = v. Donc
z(Lg—z"'Ly) = L, Méme raisonnement pour l'autre inclusion de 5).

Point 6). Soit he H—F. Le sous-arbre A dont I’ensemble de sommets est
hL,est relié a u par 'aréte h (u, a), tandis que le sous-arbre Bde I' dont 'ensemble
de sommets est z ' L est lui relié a u par I'aréte z~ 1 (a, v). Or, ces arétes h (u, a) et
z~ 1 (a, v) sont distinctes puisque

u=o(h@a)=e(z"!(av)

Donc A n B = (). Méme raisonnement pour la seconde partie du point 6).

Nous sommes maintenant en mesure de démontrer 'énoncé suivant, di a
Bass-Serre [Se, p. 50 et aussi § 5].

(5.4) CoOROLLAIRE. Soit G un groupe agissant sur un arbre T, de
maniére que le graphe quotient G\I' soit un lacet (graphe comportant
exactement un sommet et yne aréte). Soit aec ArI'. Alors G est isomorphe a
une HN N-extension de base G, et dont l'un des sous-groupes associés est G,

Démonstration. Posonsu = o(a)etv = e (a). Puisque Som G\I' = {u 3,
ilexiste z € G tel que zu = v. On en déduit, d’aprés le Corollaire (5.3) que z 7 1G,z
< G, et que 'homomorphisme W:HNN (G,, G, ) > G qui induit les
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inclusions est injectif (avec ¢ (x) = z~!xz). D’autre part, d’aprés (2.4), G est
engendré par
G,URy,,ouR,, ={reG|ilexistea, e ArT

avec o(a)ef{uv}ete(@)er{uv}}.

Soit r € R, ,,. Comme toutes les arétes de I sont dans la méme orbite, il existe
d, € G tel que a, = d,a. On a donc

dv = dzue {ru,rv}.
Sio(a) = u,ona
deG,etela)=r,=4dv,

d’ou

T T T Y N e L S

d"'reG, = zG,z"'.

r

Sio(a,) = v,ona

z7 ldeG,ete(z la) =z dv =z rv,

d’ou encore d_ 're G, = zG,z™ 1. Dans tous les cas on déduit donc que r est |
dans le sous-groupe engendré par G, et z, d’ou la surjectivité de V. B

6. STRUCTURES BIPOLAIRES

Rappelons qu’une structure bipolaire sur un groupe G est une partition de G
en cing sous-ensembles F, EE, E*E, E*E* et EE* satisfaisant aux axiomes 1)a 6) |
ci-dessous, avec les conventions suivantes : Si A et B sont deux sous-ensembles de
G, on définit ’ensemble

AB = {g = abeG|lacA et beB}

et '’ensemble
At ={geG|lgled}.

[ e e R e i i SO S S I

Si X € { E, E*}, alors (X*)* = X .
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