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On en déduit que g et h translatent avec amplitude 2 des chaînes Cg et

respectivement Ck, et Cg n Ch contient l'arête a ainsi que sa transformée par

La proposition (3.5) implique alors le fait (classique) que g2 et h2

engendrent un groupe libre de rang 2 dans SL2 (Z). Observons que le sous-

groupe de SL2 (Z) engendré par g et h2 n'est pas libre, comme en témoigne la

relation {gh~2)A 1. Ceci montre que l'hypothèse rkg > q < skh de (3.5) est

essentielle.

Soit Bh i e J, une famille de sous-groupes d'un groupe G et soit F un sous-

groupe de n Bb Les inclusions Bt c= G s'étendent en un unique homomorphisme

: *FBt - G, où *FBt dénote le produit de tous les Bt amalgamé sur F.

(4.1) Proposition. Soient Bh G et F comme ci-dessus. On suppose que
le groupe G agit sur un ensemble X et qu'il existe une famille Lt (i e J) de

sous-ensembles de X et un élément de X — u Lt tels que :

1) F <z Gd

2) (Bt — F) (Lj u { d }) c= Lb pour tout i, j e J avec i # j.

Alors, Fhomomorphisme *FBt — G induits par les inclusions Bt cz G est

injectif

Démonstration. Tout élément g e *FBi peut s'écrire g gxf avec / g F et

g1 bnbn-1 bl9 où les Bk sont des éléments de Bi{k) — F, avec i (k) g Jet
i (k) i (k+ 1). Si ^ (g) 1 et g # 1, cela entraîne que g1 # 1, puisque 4> | F
est injectif. Mais alors, si gx ^ 1, nos hypothèses font que *¥ (g) de Lt(n). Comme
d $ Li(n), cela montre que (g) j=- 1, d'où *¥ est injectif.

(4.2) Remarques. 1) Il résulte de la démonstration ci-dessus que

l'hypothèse 2) de (4.1) peut être affaiblie en: Xt {Lj u {d}) a Lb pour tout i,

j e J avec i ^ j, où Xt est un ensemble de représentants des classes à gauche non-
triviales de Bt modulo F.
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2) Le cas F 1 redonne la Proposition 1.1 de [Ti 2].
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(4.3) Corollaire. Soit G un groupe agissant sur un arbre T. Soit

a e Ar F avec o (a) u et e (a) v. Alors, Fhomomorphisme

y: G« *Ga Gv -» G induit par les inclusions dans G des groupes d'isotropie de

u, v et a est injectif.

Démonstration. Soit f le premier subdivisé barycentrique de F. Rappelons

que le graphe f peut être défini par :

Som F Som F u Ar F

Ar f {(x, b) g Som F x Ar F \ o (b) x }

u {(b, x) e Ar F x Som F | e (b) x }

avec

o (x, b) x, e (x, b) b

o (b, x) b et e (b, x) x

Le graphe f est un arbre si et seulement si F en est un.
Le corollaire (4.3) se déduit par application du critère (4.1) à la situation:

XSom Ê, B1Gu,B2Gv, G(II,a)

L1 Som 01 (u, a), L2 Som 01 (a, v), d ae Som f

1

j (4.4) Corollaire. (Bass-Serre, [Se, § 4]). Soit G un groupe agissant
i sur un arbre T de manière que le graphe quotient G\T soit un segment (arbre
\ comportant une seule arête). Soit a e Ar F, avec o (a) u et e (a)
| Alors, rhomomorphisme Gu *Ga Gv-»induit par les inclusions est un
^ isomorphisme.

i
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Démonstration. L'homomorphisme est injectif par (4.3). Pour démontrer
la surjectivité de *F, on observe que l'arête a se projette sur l'unique arête ä de

G\r, ce qui entraîne que B { u, v } est un ensemble de représentants pour
l'action de G sur Som T. La proposition (2.4) assure alors que G est engendré par
Gu u Rb, avec RB { r e G | il existe sr e Ar T telle que o (sr) e Bete (sr) e rB }.
Soit r e Rb. Comme toutes les arêtes de T sont dans l'orbite de a, il existe hre G

tel que sr hra. De plus, o (sr) o (a) u, d'où hr e Gu. Donc e (sr) rv
hrv, d'où h'1 r e Gv. On en déduit que G est engendré par Gu u Gv,, d'où la

surjectivité de x¥.

5. Critère pour les #7V7V-extensions

Soit F un sous-groupe d'un groupe H. Soit <j) : F - H un homomorphisme
injectif (un autre plongement de F dans H). Désignons par < z > le groupe
cyclique infini de générateur z. Rappelons que l'on définit le groupe
HNN {H, F, (j>) comme le quotient du produit libre H * < z > par la clôture
normale des éléments z_1/z 4> (/)_1 pour / e F. On dit que le groupe H*

HNN (H, F, c|)) est obtenu de H, F et (j> par la construction HNN. Le groupe
H s'appelle la base de H*, z s'appelle la lettre stable et F et cj) (F) sont les sous-

groupes associés [L-S, Chap. IV, § 2]. Nous allons démontrer le critère suivant

pour reconnaître une HNN-extension dans un groupe :

(5.1) Théorème Soit G un groupe, F c H c= G des sous-groupes de

G et zeG tel que z-1 Fz a H. Désignons par $.F^>H
rhomomorphisme <|> (/) z_1/z- On suppose que G agit sur un ensemble

X et qu'il existe des sous-ensembles LF et L^ de X ainsi qu'un élément

de X — (LF u L^) satisfaisant aux conditions suivantes : (notation : LF

LF { d } { d })

1) F cz Gd

2) (H — F) c= LF

3) Z(H-MF))2-TfcLt
4) z'1Lf a Lfet zLç cz Lç
5) z (LF — z~lLF)c Lçet z"1 (L^-zLJ
6) (H-F) n z"1 LP 0 et z (//-<)) (F)) z"1 n zL,,, 0
A/ors, Vhomomorphisme ¥ : HNN (H, I\ (J)) -> G induit par les inclusions (avec

z comme lettre stable) est injectif.
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