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On en déduit que g et h translatent avec amplitude 2 des chaines C, et

respectivement C,, et C, n C, contient l'aréte a ainsi que sa transformée par
0 —1 . L : :

( 1 O)’ La proposition (3.5) implique alors le fait (classique) que g2 et h?
engendrent un groupe libre de rang 2 dans SL, (Z). Observons que le sous-
groupe de SL, (Z) engendré par g et h* n’est pas libre, comme en témoigne la
relation (gh~?)* = 1. Ceci montre que I'hypothése rk, > q < sk, de (3.5) est
essentielle.

4. CRITERES POUR PRODUITS AMALGAMES

Soit B;, i € J, une famille de sous-groupes d’'un groupe G et soit F un sous-

groupe de N B;. Lesinclusions B, = G s’étendent en un unique homomorphisme
ieJ
¥: *.B;, - G, ou *:B; dénote le produit de tous les B; amalgamé sur F.

(4.1) PROPOSITION. Soient B;,, G et F comme ci-dessus. On suppose que
le groupe G agit sur un ensemble X et qu’il existe une famille L;(ieJ) de

sous-ensembles de X et un élément de X — U L; tels que:
ieJ

1) FcG,
2) (Bi—F)(L;u {d}) < L, pour tout i, je J avec i # j.

Alors, Thomomorphisme W¥:*pB; - G induits par les inclusions B; = G est
injectif.

Démonstration. Tout élément g € *B,; peut s’écrireg = g, f avec f € Fet .
g, = byb,_; ... by, ou les B, sont des €léments de B; 4, — F, avec i (k)e Jet
i(k) #i(k+1).Si¥(g9) = letg # 1,celaentrainequeg, # 1, puisque Y| F
est injectif. Mais alors, sig; # 1, nos hypotheses font que ¥ (g)de L; . Comme
d ¢ L; ), cela montre que ¥ (g) # 1, dou ¥ est injectif. B

(4.2) Remarques. 1) 11 résulte de la démonstration ci-dessus que
Phypothése 2) de (4.1) peut étre affaiblie en: X, (L; U {d }) = L, pour tout i,
je Javeci # j,ou X;est un ensemble de représentants des classes a gauche non-
triviales de B; modulo F.

2) Le cas F = 1 redonne la Proposition 1.1 de [Ti 2].
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(4.3) CoOROLLAIRE. Soit G un groupe agissant sur un arbre I'. Soit
aeArI” avec o(@ =u e e(a)=v.  Alors, T'homomorphisme

¥:G,*s;, G, = G induit par les inclusions dans G des groupes d’isotropie de
u,v et a est injectif.

. Démonstration. Soit I le premier subdivisé barycentrique de I". Rappelons
i que le graphe I peut étre défini par:

SomI' = SomTI'u Ar T
Arl = {(x,b)eSomT x ArT|o(b) = x}
U{(,x)eArT x SomTI'|e(b) = x}

avec
| o(x,b) =x, e(x,b)=b,
] olb,x) =b et e(b,x) = x.

- Le graphe I est un arbre si et seulement si I' en est un.
Le corollaire (4.3) se déduit par application du critére (4.1) a la situation:

X =SomI, B, =6G,, B, =0,, F=0G,= Gy =Gy,
L, = Som % (u,a), L, = Som%#B(a,v), d = aecSomI

FiG. 7.

(4.4) COROLLAIRE. (Bass-Serre, [Se, §4]). Soit G un groupe agissant
3 surun arbre I' de maniére que le graphe quotient G\I' soit un segment (arbre
| comportant une seule aréte). Soit ae ArT, avec o(a) = u et e(a) = v

, . o . :
Alors, Phomomorphisme ¥: G, *6. G, = G induit par les inclusions est un
isomorphisme.

PR BT N
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Démonstration. L’homomorphisme W est injectif par (4.3). Pour démontrer
la surjectivité de ¥, on observe que 'aréte a se projette sur I'unique aréte a de
G\I', ce qui entraine que B = { u, v } est un ensemble de représentants pour
'action de G sur Som I'. La proposition (2.4) assure alors que G est engendré par
G, U Rg,avec Ry = {re G|ilexistes, € Ar I'tellequeo (s,) e Bete(s,) erB }.
Soit r € Rg. Comme toutes les arétes de I" sont dans I'orbite de a, il existe h, € G
tel que s, = h,a. De plus, 0(s,) = 0(a) = u, d’ou h,e G,. Donc e(s,) = rv
= h,, dou b ! r € G,. On en déduit que G est engendré par G, U G,, d’ou la
surjectivité de V. ]

5. CRITERE POUR LES H N N-EXTENSIONS

Soit F un sous-groupe d’un groupe H. Soit ¢: F - H un homomorphisme
injectif (un autre plongement de F dans H). Désignons par < z > le groupe
cyclique infini de générateur z. Rappelons que l'on définit le groupe
HNN (H, F, ) comme le quotient du produit libre H * < z > par la cloture
normale des éléments z7'fz ¢ (f)"! pour f € F. On dit que le groupe H*
= HNN (H, F, ¢) est obtenu de H, F et ¢ par la construction HNN. Le groupe
H s’appelle la base de H*, z s’appelle la lettre stable et F et ¢ (F) sont les sous-
groupes associés [ L-S, Chap. 1V, § 2]. Nous allons démontrer le critére suivant
pour reconnaitre une HN N-extension dans un groupe:

(5.1) THEOREME Soit G un groupe, F <« H = G des sous-groupes de
G et zeG tel que z71 Fz c H. Désignons par ¢:F - H
Phomomorphisme & (f) = z~'fz. On suppose que G agit sur un ensemble
X et quil existe des sous-ensembles Ly et L, de X ainsi qu'un élément
de X — (Lp v L) satisfaisant aux conditions suivantes: (notation: Ly
=Lyu{d}L,=L,u{d})

1) F c G,
2) (H-F)L, < Ly

3) z(H—0(F)z 'Ly < L,

4 z7 'Lpc Ly e zL,c L,

5 z(Lg—z L) = I, et z '(Ly—zLy) < Lg

6) H-F)L,nz 'Ly=Q¢ e z(H-¢6F)z 'LinzL, =@

Alors, Thomomorphisme W¥: HNN (H, F, d) —» G induit par les inclusions (avec
z comme lettre stable) est injectif.
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