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3. CRITERE POUR GROUPES LIBRES
Il s’agit du critere suivant:

(3.1) PROPOSITION. Soient G un groupe agissant sur un ensemble X, B
un sous-ensemble de G et H le sous-groupe de G engendré par B.
Supposons qu’il existe une collection L, (v e B) de sous-ensemblesde X et un
| clément d de X — U L, telsque b"(L,v {d}) < L, pour tout b et

veB

veB avec b # v ettout neZ — {0}. Alors H est libre de base B.

! Démonstration. Soit w = v/}' v5? ... vi*, avec v; € B, n; € Z et v; # v; 4. On
b sait que H est libre de base B si, pour tout élément w satisfaisant aux conditions
‘ ci-dessus, I’équation w = 1 n’est possible que sin; = 0 pour tout i (conséquence
de [L-S, Chap. 1, Prop. 1.9], par exemple). Or, les hypotheses de (3.1) impliquent
que wde L, . Comme d & L,,onawd # d, douw # 1. ]
Le critere (3.1) est un cas particulier d’un énoncé de Tits [Ti 2, Prop. 1.1]
(énoncé qui sera lui-méme généralisé au § 4). Mais son usage implicite est plus
f ancien. Dans [F-K, pp. 190-194] ou [Le, pp. 118-120], on Iutilise pour
' démontrer la liberté des groupes de Schottky: soient (P;, Q;) m paires de cercles
dans C tels que tous les cercles soient extérieurs les uns aux autres. Soient
| b,:CU {0} > Cu{cw} des transformations de Mobius telles que b,
§ (extérieur (P)) < intérieur (Q,), (i=1, ..m). On déduit qur les b, engendrent un
B groupe libre de rang n dans le groupe de Mdbius en appliquant (3.1) & L,
| = intérieur (P;) U intérieur (Q;) et d = oo.

| Nous allons maintenant utiliser notre critére (3.1) pour donner une nouvelle
| démonstration du théoréme de Serre [Se, Théoréme 4, § 3.3]:

| (3.2) THEOREME. Soit G ungroupe agissant librement sur un arbre T' et
| soit A unarbre de représentants. Alors G est libre de base R, 4 (Voir (2.4)).

Démonstration. Comme l'action est libre, G est engendré par Ry, ,,, 4 €n vertu
de (2.4). Puisque A4 est connexe et que I' est un arbre, il existe, pour chaque
r € Rgom 4 Une unique aréte a, € Ar I telle que o (a,) € Som A et e (a,) e r Som A.
On va appliquer le critere (3.1) a la situation:

X =SomI' L, =Som%(,)uwSom®RZ(r 'a) deSomA
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Soit M, = Som A U [u Ls] (re Ry, 4)- On déduit de la définition de
SFr

Rg.m 4 que lorbite de a, ne contient aucune des arétes de 4 et que
M, cB(r ta)nR(a,).
Il s’en suit que, pour tout n > 0, on a
"M, c QZ(a,) cL et r"M,c Z(r 'a)c L,. |

Rappelons maintenant la classification de Tits [Ti, Proposition 3.2] des
automorphismes d’un arbre:

(3.3) PROPOSITION. Soit g un automorphisme d’un arbre T'. Alors, g
posséde l'une des deux propriétés suivantes (qui s'excluent mutuellement ) :

1) g laisse fixe un sommet de T;

2) il existe une unique chaine infinie C, de I' stable par g et surlaquelle g
agit par translation non-triviale.

Remarque. Comme nos graphes sont orientés, le cas (ii) de la proposition
3.2 de [Ti] ne se produit pas. C’est pourquoi il n’y a que deux possibilités dans
(3.3).

(3.4) PROPOSITION. "Soient g et h deux automorphismes d'un arbre T'
qui ne laissent aucun sommet fixe. Alors, si ArC,nArC, = @, les
automorphismes g et h engendrent un sous-groupe libre de rang 2 dans le
groupe Aut T des automorphismes de T
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Démonstration. Deux cas peuvent se présenter :
a) SomC,nSom C, = {v} < Som [}
} b) Som C,nSom C, = Q.

. . . ~ /
Envisageons tout d’abord le cas a), et supposons qu'’il existe des arétes a,, a; € C,
et a,, a, € C, satisfaisant aux conditions suivantes:

o(a) =e(@) =v=o(a)=ela),
ga,e B(a,) et ha,eRB(a,).

Cette supposition est anodine car, dans les autres cas, la démonstration serait
identique apres adaptation des notations: changement éventuel de « o ( ) » en
| «e ()», de «ZB» en « A », etc. De la méme maniére que dans (3.2), la
proposition (3.4) est une conséquence du critére (3.1) appliqué a la situation:

X =SomI', d=v
L, = Som % (a,) v Som % (a;)
L, = Som % (a;) U Som Z (a;)

o AN AN
Ly 0 \
- q, ag R 8 Y ///
~Z ’ V —4 ="
S yayeva
Lﬂ \ h [/ LL‘ p
' h
Cq % /
AN N\
FiG. 3.

Dans le cas b), soit ¢ : CH, — I" un chemin minimal reliant C ;4 C;. On peut
supposer que ¢ (0) € C, et c (n) € C,, les autres cas donnant des démonstrations

identiques & changement de notations prés. On applique alors le critére (3.1) a la
situation :

X = SomT, deSomc(CH,) — {c(0),c(n)}
L, = Som Z(c([0,1])), L, = Som & (c ([n —1, n]))
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FiG. 4.

La seule difficulté est que le choix du sommet d ci-dessus n’est pas possible si
n = 1. Ce cas facheux s’évite facilement en passant au premier subdivisé
barycentrique de I'. ]

(3.5) PROPOSITION. Soient g, et g, deuxautomorphismesdunarbre T
qui ne laissent aucun sommet fixe. On suppose que ¢g; induit une translation
d’amplitude k; sur sa chaine C; = C, et que

Card (ArC; nArC,) = g < «©.

Soient r et s deux entiers saiisfaisant a rk;, > q < sk,. Alors, les
automorphismes ¢y et g5 engendrent un groupe libre de rang 2 dans Aut T

Démonstration. Puisque I' est un arbre, le graphe C; n C, est connexe; il
s’agit donc d’'un chemin B de longueur q. On peut supposer que la premiere aréte
ade B a son origine a I’origine de B et que g; a € % (a) (les autres cas donnent lieu
a des arguments identiques). De méme, on peut supposer que les arétes
a; € Ar C, et a, € Ar C, « précédant » a sont orientées de fagcon que e (a,)
= e(a,) = o(a). L’hypothese rk, > q < sk, implique que

B c (93 (a;) N 2 (g} a1)) a (,@ (ay) N 2 (g5 az)) .

On va appliquer le critere (3.1) a la situation:
X = Som I d = e(a)

L, = Som Z (a,) v Som % (g} a,)
L, = Som % (a,) v Som £ (g5 a,))
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FiG. 3.

On vérifie les hypothéses de (3.1) comme pour la démonstration de (3.2), en
‘utilisant que '
§ Lyu{d} c #B(a,) nR(g3 ay)

‘:et
Lzu{d}Cﬁ(al)m;%(g’lal). : [

(3.6) Exemple. Considérons Paction habituelle par transformations
'homographiques du groupe SL,(Z) sur le demi-plan de Poincaré
'H = {zeC|Imz > 0}. L’orbite de I'arc de cercle

a={z=¢e%n2<z<2n/3)}

8 arbre (voir figure 6 ci-dessous).

1 .
Soient g = ((1) D et h = ( ) (l))’ c’est-a-dire, en termes de

transformations homographiques: g(z) = z + l et g(z) = z—% On vérifie

B par calcul direct que ga, g~ 'a, ha et h™ 'a sont les arétes dessinées sur la figure 6:

[V
ga. a 4 g«
ha
4
ha
ll ‘\" B Al -
-1 o 4 2
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On en déduit que g et h translatent avec amplitude 2 des chaines C, et

respectivement C,, et C, n C, contient l'aréte a ainsi que sa transformée par
0 —1 . L : :

( 1 O)’ La proposition (3.5) implique alors le fait (classique) que g2 et h?
engendrent un groupe libre de rang 2 dans SL, (Z). Observons que le sous-
groupe de SL, (Z) engendré par g et h* n’est pas libre, comme en témoigne la
relation (gh~?)* = 1. Ceci montre que I'hypothése rk, > q < sk, de (3.5) est
essentielle.

4. CRITERES POUR PRODUITS AMALGAMES

Soit B;, i € J, une famille de sous-groupes d’'un groupe G et soit F un sous-

groupe de N B;. Lesinclusions B, = G s’étendent en un unique homomorphisme
ieJ
¥: *.B;, - G, ou *:B; dénote le produit de tous les B; amalgamé sur F.

(4.1) PROPOSITION. Soient B;,, G et F comme ci-dessus. On suppose que
le groupe G agit sur un ensemble X et qu’il existe une famille L;(ieJ) de

sous-ensembles de X et un élément de X — U L; tels que:
ieJ

1) FcG,
2) (Bi—F)(L;u {d}) < L, pour tout i, je J avec i # j.

Alors, Thomomorphisme W¥:*pB; - G induits par les inclusions B; = G est
injectif.

Démonstration. Tout élément g € *B,; peut s’écrireg = g, f avec f € Fet .
g, = byb,_; ... by, ou les B, sont des €léments de B; 4, — F, avec i (k)e Jet
i(k) #i(k+1).Si¥(g9) = letg # 1,celaentrainequeg, # 1, puisque Y| F
est injectif. Mais alors, sig; # 1, nos hypotheses font que ¥ (g)de L; . Comme
d ¢ L; ), cela montre que ¥ (g) # 1, dou ¥ est injectif. B

(4.2) Remarques. 1) 11 résulte de la démonstration ci-dessus que
Phypothése 2) de (4.1) peut étre affaiblie en: X, (L; U {d }) = L, pour tout i,
je Javeci # j,ou X;est un ensemble de représentants des classes a gauche non-
triviales de B; modulo F.

2) Le cas F = 1 redonne la Proposition 1.1 de [Ti 2].
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