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3. Critère pour groupes libres

Il s'agit du critère suivant :

(3.1) Proposition. Soient G un groupe agissant sur un ensemble X,B
un sous-ensemble de G et H le sous-groupe de G engendré par B.

Supposons qu'il existe une collection Lv (v e B) de sous-ensembles de X et un

élément d de X — u Lv tels que bn (Lv u { d}) c= Lb pour tout b et
veB

v e B avec b # v et tout ne Z — { 0 }. Alors H est libre de base B.

Démonstration. Soit w t/}1 vn22... v"k, avec vt e B, nt e Z et vt # vi+1. On
sait que H est libre de base B si, pour tout élément w satisfaisant aux conditions
ci-dessus, l'équation w 1 n'est possible que si nt 0 pour tout i (conséquence
de [L-S, Chap. 1, Prop. 1.9], par exemple). Or, les hypothèses de (3.1) impliquent
que wd e LVl. Comme d ^ Lvv on a wd ^ d, d'où w ^ 1.

Le critère (3.1) est un cas particulier d'un énoncé de Tits [Ti 2, Prop. 1.1]

(énoncé qui sera lui-même généralisé au § 4). Mais son usage implicite est plus
ancien. Dans [F-K, pp. 190-194] ou [Le, pp. 118-120], on l'utilise pour
démontrer la liberté des groupes de Schottky : soient (P„ Qt) m paires de cercles

dans C tels que tous les cercles soient extérieurs les uns aux autres. Soient

bi:Cu{oo}-^Cu{oo} des transformations de Möbius telles que bt

(extérieur (Pf)) c intérieur (QJ, (f 1, ...m). On déduit qur les bt engendrent un
groupe libre de rang n dans le groupe de Möbius en appliquant (3.1) à Lb.

intérieur (Pt) u intérieur (Qf) et d oo.

Nous allons maintenant utiliser notre critère (3.1) pour donner une nouvelle
démonstration du théorème de Serre [Se, Théorème 4', § 3.3] :

(3.2) Théorème. Soit G un groupe agissant librement sur un arbre T et

soit A un arbre de représentants. Alors G est libre de base PSom A (voir (2.4)).

Démonstration. Comme l'action est libre, G est engendré par RSom A en vertu
de (2.4). Puisque A est connexe et que T est un arbre, il existe, pour chaque
r e RSom A une unique arête are Ar T telle que o (ar) e Som A et e (ar) g r Som A.
On va appliquer le critère (3.1) à la situation:

X Som T Lr Som ^ (ar) u Som (r 1ar) d e Som A



Soit Mr Som A u (r e Rsom ^4). On déduit de la définition deu Lsj+ r

^som a Que l'orbite de ar ne contient aucune des arêtes de A et que

Mr a 08 (r~ 1ar) n 08 (ar).

Il s'en suit que, pour tout n > 0, on a

rnMr a 08 (ar) a Lr et r~nMr a 0t (r_1ur) ci Lr.

Rappelons maintenant la classification de Tits [Ti, Proposition 3.2] des

automorphismes d'un arbre :

(3.3) Proposition. Soit g un automorphisme d'un arbre T. Alors, g

possède l'une des deux propriétés suivantes (qui s'excluent mutuellement) :

1) g laisse fixe un sommet de F ;

2) il existe une unique chaîne infinie Cg de F stable par g et sur laquelle g

agit par translation non-triviale.

Remarque. Comme nos graphes sont orientés, le cas (ii) de la proposition
3.2 de [Ti] ne se produit pas. C'est pourquoi il n'y a que deux possibilités dans

(3-3).

(3.4) Proposition. Soient g et h deux automorphismes d'un arbre F

qui ne laissent aucun sommet fixe. Alors, si Ar Cg n Ar Ch 0, les

automorphismes g et h engendrent un sous-groupe libre de rang 2 dans le

groupe Aut F des automorphismes de F.
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Démonstration. Deux cas peuvent se présenter :

a) Som Cg n Som Ch { v } c Som T ;

b) Som Cg n Som Ch 0.

Envisageons tout d'abord le cas a), et supposons qu'il existe des arêtes ag, a'g e Cg

et ah9 a'h e Ch satisfaisant aux conditions suivantes :

Cette supposition est anodine car, dans les autres cas, la démonstration serait

identique après adaptation des notations : changement éventuel de « o » en
« e », de « J* » en « », etc. De la même manière que dans (3.2), la
proposition (3.4) est une conséquence du critère (3.1) appliqué à la situation:

Dans le cas b), soit c : CH„ T un chemin minimal reliant Cg à Ch. On peut
supposer que c (0) e Cg et c (n) e Ch, les autres cas donnant des démonstrations
identiques à changement de notations près. On applique alors le critère (3.1) à la
situation :

o (ag) e (dg) v o (ah) e (dh),

gag 6 # (ag) et hah e & (ah).

X Som T, d v

Lg Som @ (ag) u Som M (ag)

Lh Som M (ah) u Som 0t (ah)

Fig. 3.

X — Som r, de Som c — {c (0), c (n)}
Lg Som » (c ([o, 1])), Lh Som ât (c ([« -1, n]))
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La seule difficulté est que le choix du sommet d ci-dessus n'est pas possible si

n 1. Ce cas fâcheux s'évite facilement en passant au premier subdivisé

barycentrique de T.

(3.5) Proposition. Soient g1 et g2 deux automorphismes d'un arbre T

qui ne laissent aucun sommet fixe. On suppose que gt induit une translation

d*amplitude kt sur sa chaîne Cf Cg. et que

Card (Ar C1 n Ar C2) q < oo

Soient r et s deux entiers satisfaisant à r/q > q < sk2. Alors, les

automorphismes g\ et gs2 engendrent un groupe libre de rang 2 dans Aut T.

Démonstration. Puisque T est un arbre, le graphe C1 n C2 est connexe; il
s'agit donc d'un chemin B de longueur q. On peut supposer que la première arête

a de B a son origine à l'origine de B et que gtae^ (a) (les autres cas donnent lieu
à des arguments identiques). De même, on peut supposer que les arêtes

a1 e Ar Cx et a2 e Ar C2 « précédant » a sont orientées de façon que e (a

e (a2) o (a). L'hypothèse rk1 > q < sk2 implique que

Bc(3S(a,)n m(g\a^)n(âS n (M (gs2 a2)).

On va appliquer le critère (3.1) à la situation:

X Som T d e(a)

Li Som 0t (af) u Som (g\ aJ

L2 Som 01 (a2) u Som 0i (g2 a2))
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FlG. 5.

On vérifie les hypothèses de (3.1) comme pour la démonstration de (3.2), en

j utilisant que
j Lx u { d } c & (a2) n 0 (g2 a2)

jet
| L2 u { d } c 0} (a1) n 0t (g\ ax).
|

| (3.6) Exemple. Considérons faction habituelle par transformations
f j homographiques du groupe SL2 (Z) sur le demi-plan de Poincaré

H {zeC|Imz>0}. L'orbite de l'arc de cercle
r.:

a { z elB | k/2 < z < 2n/3 }

constitue, comme le remarque Serre [Se, p. 52], la réalisation géométrique d'un
arbre (voir figure 6 ci-dessous).

Soient
1 1\ /I 0\

jl et " ^ jl' c est-a-dire, en termes de

transformations homographiques : g (z) z -F 1 et g (z)
z + 1

On vérifie

par calcul direct que ga, g
1
a, hast h 1a sont les arêtes dessinées sur la figure 6 :

x\ -A
FIG. 6.
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On en déduit que g et h translatent avec amplitude 2 des chaînes Cg et

respectivement Ck, et Cg n Ch contient l'arête a ainsi que sa transformée par

La proposition (3.5) implique alors le fait (classique) que g2 et h2

engendrent un groupe libre de rang 2 dans SL2 (Z). Observons que le sous-

groupe de SL2 (Z) engendré par g et h2 n'est pas libre, comme en témoigne la

relation {gh~2)A 1. Ceci montre que l'hypothèse rkg > q < skh de (3.5) est

essentielle.

Soit Bh i e J, une famille de sous-groupes d'un groupe G et soit F un sous-

groupe de n Bb Les inclusions Bt c= G s'étendent en un unique homomorphisme

: *FBt - G, où *FBt dénote le produit de tous les Bt amalgamé sur F.

(4.1) Proposition. Soient Bh G et F comme ci-dessus. On suppose que
le groupe G agit sur un ensemble X et qu'il existe une famille Lt (i e J) de

sous-ensembles de X et un élément de X — u Lt tels que :

1) F <z Gd

2) (Bt — F) (Lj u { d }) c= Lb pour tout i, j e J avec i # j.

Alors, Fhomomorphisme *FBt — G induits par les inclusions Bt cz G est

injectif

Démonstration. Tout élément g e *FBi peut s'écrire g gxf avec / g F et

g1 bnbn-1 bl9 où les Bk sont des éléments de Bi{k) — F, avec i (k) g Jet
i (k) i (k+ 1). Si ^ (g) 1 et g # 1, cela entraîne que g1 # 1, puisque 4> | F
est injectif. Mais alors, si gx ^ 1, nos hypothèses font que *¥ (g) de Lt(n). Comme
d $ Li(n), cela montre que (g) j=- 1, d'où *¥ est injectif.

(4.2) Remarques. 1) Il résulte de la démonstration ci-dessus que

l'hypothèse 2) de (4.1) peut être affaiblie en: Xt {Lj u {d}) a Lb pour tout i,

j e J avec i ^ j, où Xt est un ensemble de représentants des classes à gauche non-
triviales de Bt modulo F.

4. Critères pour produits amalgamés

ieJ

2) Le cas F 1 redonne la Proposition 1.1 de [Ti 2].
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