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SUR L’USAGE DE CRITERES
POUR RECONNAITRE UN GROUPE LIBRE,
UN PRODUIT AMALGAME OU UNE HNN-EXTENSION

par Jean-Claude HAUSMANN

INTRODUCTION

Soit G un groupe agissant sur un ensemble X et soit H un sous-groupe de G. Il
existe dans la littérature divers critéres pour décider si H est un groupe libre, un
produit amalgamé ou une HN N-extension, ceci a I'aide de conditions sur I’action
de G sur X. Le lecteur trouvera un résumé de ces travaux aux pages 167-169 du
§ 1I1.12 de [L-S].

Le but principal de cet article est de montrer le profit que 'on peut tirer de
critéres analogues lorsque X est un arbre. Nous présentons ainsi dans le §'3 une
simplification de la démonstration combinatoire de Serre qu’un groupe est libre
il agit librement sur un arbre [Se, § 3.3]. Nous obtenons aussi quelques
résultats sur la liberté de certains sous-groupe du groupe d’automorphismes d’'un
arbre. :

Les sections 4 et 5 sont consacrées 4 la détection des produits amalgamés et
des HN N-extensions, avec des criteres différents de ceux indiqués dans [L-S]. On
obtient ainsi une démonstration simple des théorémes de Bass-Serre affirmant
qu’un groupe qui agit sur un arbre de maniere que le graphe quotient ait
exactement une aréte est un produit amalgamé non-trivial ou une HNN-
extension.

Cet article se termine par un nouvel éclairage sur les structures bipolaires de
Stallings [St], dans leur version généralisée par Lyndon-Schupp [L-S, IV.6]. On
donne une nouvelle démonstration du théoréme de Stallings qu'un groupe
admet une structure bipolaire si et seulement si il est un produit amalgamé non-
trivial ou une HN N-extension.') Dans un sens, on démontre quun groupe qui

1) Cerésultat fut utilisé par Stallings dans sa preuve originale du théoréme de structure
pour les groupes a une infinité de bouts. Par ailleurs, d’autres démonstrations de ce
théoréme de structures furent ensuite trouvées, qui utilisent la théorie de Bass-Serre (voir

[Du], [S-W,§6], par exemple). Mais ces preuves n’utilisent plus le passage par les
structures bipolaires.
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agit sur un arbre avec un élément qui agit sans sommet fixe admet une structure
bipolaire. Or un produit amalgamé non-trivial ou une HN N-extension agit
toujours sur un arbre de cette fagon par la réciproque du théoréme de Bass-Serre
cité¢ plus haut. L’autre direction s’obtient par un usage de nos critéres.

Les résultats présentés ici constituérent quelques chapitres d’un cours de
2° cycle donné par Pauteur a I'université de Genéve pendant I'année acadé-
mique 1979-1980. Je tiens a remercier P. de la Harpe pour de trés utiles conver-
sations.

2. DEFINITIONS ET GENERALITES
SUR LES ACTIONS DE GROUPES ET LES GRAPHES

(2.1) Soit G un groupe agissant sur un ensemble X. Sauf mention du
contraire, une telle action est toujours a gauche. L’ensemble des orbites est noté
G\X. Pour x € X, on définit comme de coutume le groupe d’isotropie G, de x:

G, ={geGlgx = x}

et on dit que I’action est libre si G, = { 1 } pour tout x € X. Un sous-ensemble
de X qui contient exactement un représentant par orbite est appelé un ensemble
de représentants pour l'action de G sur X.

(2.2) Un graphe T" est une paire d’ensembles (Som I', ArI'), appelés
'ensemble-des sommets et 'ensemble des arétes de I', munis de deux applications
o,e:ArI" - Som I (origine et extrémité). Comme d’habitude, on rend compte
de cette donnée par un dessin ou une aréte a est un arc orienté allant de o(a) a
e(a) ; ce dessin correspond a la réalisation géométrique du graphe qui est un CW-
complexe de dimension 1.

Une action d’un groupe G sur un graphe I" est une action de G sur Som I et
sur Ar I" telle que

ofga) = go(a) et e(ga) = ge(a)

pour tout ae ArI' et tout g € G. Les applications o et e passent alors aux
quotients G\Som I" et G\Ar I" ce qui donne un graphe quotient G\T.
(2.3) Chemins dans un graphe. On appelle CH,, tout graphe satisfaisant a:

“Som CH, = {0,1,2,..,n}
Ar CH, = {[0, 11, [L, 2], ..., [n—1,n] N
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