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SUR L'USAGE DE CRITÈRES

POUR RECONNAÎTRE UN GROUPE LIBRE,

UN PRODUIT AMALGAMÉ OU UNE HAGV-EXTENSION

par Jean-Claude Hausmann

Introduction

Soit G un groupe agissant sur un ensemble X et soit H un sous-groupe de G. Il
existe dans la littérature divers critères pour décider si H est un groupe libre, un

produit amalgamé ou une HNiV-extension, ceci à l'aide de conditions sur l'action
de G sur X. Le lecteur trouvera un résumé de ces travaux aux pages 167-169 du

§111.12 de [L-S].
Le but principal de cet article est de montrer le profit que l'on peut tirer de

critères analogues lorsque X est un arbre. Nous présentons ainsi dans le §"3 une
t simplification de la démonstration combinatoire de Serre qu'un groupe est libre

; s'il agit librement sur un arbre [Se, § 3.3]. Nous obtenons aussi quelques
| résultats sur la liberté de certains sous-groupe du groupe d'automorphismes d'un
j arbre.
| Les sections 4 et 5 sont consacrées à la détection des produits amalgamés et

des HNN-extensions, avec des critères différents de ceux indiqués dans [L-S]. On
obtient ainsi une démonstration simple des théorèmes de Bass-Serre affirmant

qu'un groupe qui agit sur un arbre de manière que le graphe quotient ait
exactement une arête est un produit amalgamé non-trivial ou une HNN-
extension.

Cet article se termine par un nouvel éclairage sur les structures bipolaires de

Stallings [St], dans leur version généralisée par Lyndon-Schupp [L-S, IV.6]. On
donne une nouvelle démonstration du théorème de Stallings qu'un groupe
admet une structure bipolaire si et seulement si il est un produit amalgamé non-
trivial ou une HAW-extension.1) Dans un sens, on démontre qu'un groupe qui

1 Ce résultat fut utilisé par Stallings dans sa preuve originale du théorème de structure
pour les groupes à une infinité de bouts. Par ailleurs, d'autres démonstrations de ce
théorème de structures furent ensuite trouvées, qui utilisent la théorie de Bass-Serre (voir
[Du], [S-W, §6], par exemple). Mais ces preuves n'utilisent plus le passage par les
structures bipolaires.
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agit sur un arbre avec un élément qui agit sans sommet fixe admet une structure
bipolaire. Or un produit amalgamé non-trivial ou une HNN-qxtension agit
toujours sur un arbre de cette façon par la réciproque du théorème de Bass-Serre
cité plus haut. L'autre direction s'obtient par un usage de nos critères.

Les résultats présentés ici constituèrent quelques chapitres d'un cours de

2e cycle donné par l'auteur à l'université de Genève pendant l'année académique

1979-1980. Je tiens à remercier P. de la Harpe pour de très utiles conversations.

2. Définitions et généralités
SUR LES ACTIONS DE GROUPES ET LES GRAPHES

(2.1) Soit G un groupe agissant sur un ensemble X. Sauf mention du

contraire, une telle action est toujours à gauche. L'ensemble des orbites est noté

G\X. Pour x g X, on définit comme de coutume le groupe d'isotropie Gx de x :

G* { 9 6 G | x }

et on dit que l'action est libre si Gx { 1 } pour tout xe X. Un sous-ensemble

de X qui contient exactement un représentant par orbite est appelé un ensemble

de représentants pour l'action de G sur X.
(2.2) Un graphe T est une paire d'ensembles (Som T, Ar F), appelés

l'ensemble des sommets et l'ensemble des arêtes de T, munis de deux applications
o, e : Ar T -> Som T (origine et extrémité). Comme d'habitude, on rend compte
de cette donnée par un dessin où une arête a est un arc orienté allant de o(a) à

e(a) ; ce dessin correspond à la réalisation géométrique du graphe qui est un CW-
complexe de dimension 1.

Une action d'un groupe G sur un graphe T est une action de G sur Som T et

sur Ar T telle que

o(ga) go(a) et e(ga) ge{a)

pour tout a e Ar T et tout g e G. Les applications o et e passent alors aux

quotients G\Som T et G\Ar T ce qui donne un graphe quotient G\T.
(2.3) Chemins dans un graphe. On appelle CHn tout graphe satisfaisant à:

Som CHn { 0, 1, 2,..., n }

Ar CHn { [0, 1], [1, 2],..., [n- 1, n] N

{o([/c-l, fc]),e([fc-l,fc])} {k-lk}
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Fig. 1. — Deux graphes de type CH4

Un chemin (de longueur n) dans un graphe T est un morphisme de graphe

c : CHn -> T. Si a et b g Som T sont dans l'image de Som CHn par c, on dit que le

chemin c relie a à b. Cette notion de chemin définit celle de çonnexité et de

composante connexe d'un graphe.
Le lecteur aura remarqué la non-unicité du modèle CHn, qui provient bien

entendu de ce que nous travaillons dans la catégorie des graphes orientés. On

peut contourner cette difficulté technique en doublant formellement chaque
arête, comme dans [Se]. Mais cela rendrait d'autres points plus compliqués et

notre solution, malgré cette petite imperfection formelle, nous a paru permettre
une exposition plus légère.

(2.4) Si U et V sont deux sous-ensembles de Som T, la distance d(U, V)
entre UttV est l'entier positifou nul définit comme le minimum des longueurs de

chemins reliant un point de U à un point de V. Pour u, v e Som T, on usera des

allégements de notation :

d (u, V) d({u], V) et d (u, v) d ({ u }, { v }).

(2.4) Proposition. Soit G un groupe agissant sur un graphe connexe T,
et soit U a Som T un ensemble de représentants pour l'action de G sur

Som T Soit ue U. Alors G est engendré par Gu u Rv, où Ru est défini
par :

Rv { r e G \ il existe a g Ar T telle que o {a) e U

et e (a) e rU }

Démonstration. Soit H le sous-groupe de G engendré par Gu u Rv. Soit
g g G. On va démontrer que g g H par récurrence sur la distance d (U, gu). Si
d {U, gu) 0, cela signifie que gueU. Comme U est un ensemble de
représentants, cela n'est possible que si gu u, auquel cas g e Gu a H.

Prenons donc comme hypothèse de récurrence que he H pour tout h g G tel
que d (U, hu) ^ d. Soit g g G satisfaisant à d(U,gu) d+ 1. Soit c : CHd+1

T un chemin reliant v g U à gu. On a alors c ({ 0, 1 }) { v, x }, avec x$ U.
Soient r e G et p e U tels que x rp, et dénotons par a l'arête c ([0, 1]) g Ar T.
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Supposons que e (a) x. Par hypothèse, on a alors r e Rv. Le chemin
c' : CHd - r défini par cf (k) r~l c (/c +1) sur les sommets et

c'([/c,/c+l]) c([/c+l,/c + 2])

sur les arêtes relie p e U à r~1gu. On en déduit par l'hypothèse de récurrence que
r~1g e H, d'où g e H.

Dans le cas où o(a) x, on a alors r-1 e Rv puisque o(r_1a) p et

e (r~1 a) r~1p. Le même raisonnement que précédemment montre que rg e H,
d'où g e H.

(2.5) Arbres. Un arbre F est un graphe connexe tel que pour toute arête a de

r, le sous-graphe maximal Fa de F qui ne contient pas l'arête a est non-connexe.
On vérifie alors que Ta est formé de deux composantes connexes, l'une contenant
o (a) et l'autre contenant e (a). Nous appelerons (a) la composante connexe de

Ta qui contient e (a) (« branches de a ») et & (a) (« racines de a ») celle où se trouve
o (a). (L'arête a est momentanément pressentie comme étant le « tronc » de

l'arbre). Les sous-graphes & (a) et 01 (a) sont des sous-arbres de F. Si g est un
automorphisme de F, on a g0î (a) 0t (ga) et g$ (a) 01 (ga).

Notre définition d'un arbre est évidemment équivalente à celle plus courante
d'un graphe sans circuit ou d'un graphe dont la réalisation géométrique est

contractile.

(2.6) Chaînes infinies. On définit les graphes CH^ de la même manière que
CHn, sauf que Som CHœ Z. Une chaîne infinie d'un graphe F est un
morphisme c : CHœ — r qui est injectif sur les ensembles de sommets et d'arêtes

(condition qui n'est pas requise dans la définition d'un chemin).

(2.7) Si G est un groupe qui agit sur un graphe connexe F, on peut toujours
trouver un ensemble de représentants de l'action de G sur Som F qui soit
l'ensemble des sommets d'un sous-arbre A de F. C'est un relevé d'un arbre

maximal de G\F. Pour une démonstration de ces faits, voir [Se, § 3]. L'arbre A

s'appelle un arbre de représentants, mais nous attirons l'attention du lecteur que
Ar A n'est pas un ensemble de représentants pour l'action de G sur Ar F.
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3. Critère pour groupes libres

Il s'agit du critère suivant :

(3.1) Proposition. Soient G un groupe agissant sur un ensemble X,B
un sous-ensemble de G et H le sous-groupe de G engendré par B.

Supposons qu'il existe une collection Lv (v e B) de sous-ensembles de X et un

élément d de X — u Lv tels que bn (Lv u { d}) c= Lb pour tout b et
veB

v e B avec b # v et tout ne Z — { 0 }. Alors H est libre de base B.

Démonstration. Soit w t/}1 vn22... v"k, avec vt e B, nt e Z et vt # vi+1. On
sait que H est libre de base B si, pour tout élément w satisfaisant aux conditions
ci-dessus, l'équation w 1 n'est possible que si nt 0 pour tout i (conséquence
de [L-S, Chap. 1, Prop. 1.9], par exemple). Or, les hypothèses de (3.1) impliquent
que wd e LVl. Comme d ^ Lvv on a wd ^ d, d'où w ^ 1.

Le critère (3.1) est un cas particulier d'un énoncé de Tits [Ti 2, Prop. 1.1]

(énoncé qui sera lui-même généralisé au § 4). Mais son usage implicite est plus
ancien. Dans [F-K, pp. 190-194] ou [Le, pp. 118-120], on l'utilise pour
démontrer la liberté des groupes de Schottky : soient (P„ Qt) m paires de cercles

dans C tels que tous les cercles soient extérieurs les uns aux autres. Soient

bi:Cu{oo}-^Cu{oo} des transformations de Möbius telles que bt

(extérieur (Pf)) c intérieur (QJ, (f 1, ...m). On déduit qur les bt engendrent un
groupe libre de rang n dans le groupe de Möbius en appliquant (3.1) à Lb.

intérieur (Pt) u intérieur (Qf) et d oo.

Nous allons maintenant utiliser notre critère (3.1) pour donner une nouvelle
démonstration du théorème de Serre [Se, Théorème 4', § 3.3] :

(3.2) Théorème. Soit G un groupe agissant librement sur un arbre T et

soit A un arbre de représentants. Alors G est libre de base PSom A (voir (2.4)).

Démonstration. Comme l'action est libre, G est engendré par RSom A en vertu
de (2.4). Puisque A est connexe et que T est un arbre, il existe, pour chaque
r e RSom A une unique arête are Ar T telle que o (ar) e Som A et e (ar) g r Som A.
On va appliquer le critère (3.1) à la situation:

X Som T Lr Som ^ (ar) u Som (r 1ar) d e Som A



Soit Mr Som A u (r e Rsom ^4). On déduit de la définition deu Lsj+ r

^som a Que l'orbite de ar ne contient aucune des arêtes de A et que

Mr a 08 (r~ 1ar) n 08 (ar).

Il s'en suit que, pour tout n > 0, on a

rnMr a 08 (ar) a Lr et r~nMr a 0t (r_1ur) ci Lr.

Rappelons maintenant la classification de Tits [Ti, Proposition 3.2] des

automorphismes d'un arbre :

(3.3) Proposition. Soit g un automorphisme d'un arbre T. Alors, g

possède l'une des deux propriétés suivantes (qui s'excluent mutuellement) :

1) g laisse fixe un sommet de F ;

2) il existe une unique chaîne infinie Cg de F stable par g et sur laquelle g

agit par translation non-triviale.

Remarque. Comme nos graphes sont orientés, le cas (ii) de la proposition
3.2 de [Ti] ne se produit pas. C'est pourquoi il n'y a que deux possibilités dans

(3-3).

(3.4) Proposition. Soient g et h deux automorphismes d'un arbre F

qui ne laissent aucun sommet fixe. Alors, si Ar Cg n Ar Ch 0, les

automorphismes g et h engendrent un sous-groupe libre de rang 2 dans le

groupe Aut F des automorphismes de F.
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Démonstration. Deux cas peuvent se présenter :

a) Som Cg n Som Ch { v } c Som T ;

b) Som Cg n Som Ch 0.

Envisageons tout d'abord le cas a), et supposons qu'il existe des arêtes ag, a'g e Cg

et ah9 a'h e Ch satisfaisant aux conditions suivantes :

Cette supposition est anodine car, dans les autres cas, la démonstration serait

identique après adaptation des notations : changement éventuel de « o » en
« e », de « J* » en « », etc. De la même manière que dans (3.2), la
proposition (3.4) est une conséquence du critère (3.1) appliqué à la situation:

Dans le cas b), soit c : CH„ T un chemin minimal reliant Cg à Ch. On peut
supposer que c (0) e Cg et c (n) e Ch, les autres cas donnant des démonstrations
identiques à changement de notations près. On applique alors le critère (3.1) à la
situation :

o (ag) e (dg) v o (ah) e (dh),

gag 6 # (ag) et hah e & (ah).

X Som T, d v

Lg Som @ (ag) u Som M (ag)

Lh Som M (ah) u Som 0t (ah)

Fig. 3.

X — Som r, de Som c — {c (0), c (n)}
Lg Som » (c ([o, 1])), Lh Som ât (c ([« -1, n]))
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La seule difficulté est que le choix du sommet d ci-dessus n'est pas possible si

n 1. Ce cas fâcheux s'évite facilement en passant au premier subdivisé

barycentrique de T.

(3.5) Proposition. Soient g1 et g2 deux automorphismes d'un arbre T

qui ne laissent aucun sommet fixe. On suppose que gt induit une translation

d*amplitude kt sur sa chaîne Cf Cg. et que

Card (Ar C1 n Ar C2) q < oo

Soient r et s deux entiers satisfaisant à r/q > q < sk2. Alors, les

automorphismes g\ et gs2 engendrent un groupe libre de rang 2 dans Aut T.

Démonstration. Puisque T est un arbre, le graphe C1 n C2 est connexe; il
s'agit donc d'un chemin B de longueur q. On peut supposer que la première arête

a de B a son origine à l'origine de B et que gtae^ (a) (les autres cas donnent lieu
à des arguments identiques). De même, on peut supposer que les arêtes

a1 e Ar Cx et a2 e Ar C2 « précédant » a sont orientées de façon que e (a

e (a2) o (a). L'hypothèse rk1 > q < sk2 implique que

Bc(3S(a,)n m(g\a^)n(âS n (M (gs2 a2)).

On va appliquer le critère (3.1) à la situation:

X Som T d e(a)

Li Som 0t (af) u Som (g\ aJ

L2 Som 01 (a2) u Som 0i (g2 a2))
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FlG. 5.

On vérifie les hypothèses de (3.1) comme pour la démonstration de (3.2), en

j utilisant que
j Lx u { d } c & (a2) n 0 (g2 a2)

jet
| L2 u { d } c 0} (a1) n 0t (g\ ax).
|

| (3.6) Exemple. Considérons faction habituelle par transformations
f j homographiques du groupe SL2 (Z) sur le demi-plan de Poincaré

H {zeC|Imz>0}. L'orbite de l'arc de cercle
r.:

a { z elB | k/2 < z < 2n/3 }

constitue, comme le remarque Serre [Se, p. 52], la réalisation géométrique d'un
arbre (voir figure 6 ci-dessous).

Soient
1 1\ /I 0\

jl et " ^ jl' c est-a-dire, en termes de

transformations homographiques : g (z) z -F 1 et g (z)
z + 1

On vérifie

par calcul direct que ga, g
1
a, hast h 1a sont les arêtes dessinées sur la figure 6 :

x\ -A
FIG. 6.
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On en déduit que g et h translatent avec amplitude 2 des chaînes Cg et

respectivement Ck, et Cg n Ch contient l'arête a ainsi que sa transformée par

La proposition (3.5) implique alors le fait (classique) que g2 et h2

engendrent un groupe libre de rang 2 dans SL2 (Z). Observons que le sous-

groupe de SL2 (Z) engendré par g et h2 n'est pas libre, comme en témoigne la

relation {gh~2)A 1. Ceci montre que l'hypothèse rkg > q < skh de (3.5) est

essentielle.

Soit Bh i e J, une famille de sous-groupes d'un groupe G et soit F un sous-

groupe de n Bb Les inclusions Bt c= G s'étendent en un unique homomorphisme

: *FBt - G, où *FBt dénote le produit de tous les Bt amalgamé sur F.

(4.1) Proposition. Soient Bh G et F comme ci-dessus. On suppose que
le groupe G agit sur un ensemble X et qu'il existe une famille Lt (i e J) de

sous-ensembles de X et un élément de X — u Lt tels que :

1) F <z Gd

2) (Bt — F) (Lj u { d }) c= Lb pour tout i, j e J avec i # j.

Alors, Fhomomorphisme *FBt — G induits par les inclusions Bt cz G est

injectif

Démonstration. Tout élément g e *FBi peut s'écrire g gxf avec / g F et

g1 bnbn-1 bl9 où les Bk sont des éléments de Bi{k) — F, avec i (k) g Jet
i (k) i (k+ 1). Si ^ (g) 1 et g # 1, cela entraîne que g1 # 1, puisque 4> | F
est injectif. Mais alors, si gx ^ 1, nos hypothèses font que *¥ (g) de Lt(n). Comme
d $ Li(n), cela montre que (g) j=- 1, d'où *¥ est injectif.

(4.2) Remarques. 1) Il résulte de la démonstration ci-dessus que

l'hypothèse 2) de (4.1) peut être affaiblie en: Xt {Lj u {d}) a Lb pour tout i,

j e J avec i ^ j, où Xt est un ensemble de représentants des classes à gauche non-
triviales de Bt modulo F.

4. Critères pour produits amalgamés

ieJ

2) Le cas F 1 redonne la Proposition 1.1 de [Ti 2].
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(4.3) Corollaire. Soit G un groupe agissant sur un arbre T. Soit

a e Ar F avec o (a) u et e (a) v. Alors, Fhomomorphisme

y: G« *Ga Gv -» G induit par les inclusions dans G des groupes d'isotropie de

u, v et a est injectif.

Démonstration. Soit f le premier subdivisé barycentrique de F. Rappelons

que le graphe f peut être défini par :

Som F Som F u Ar F

Ar f {(x, b) g Som F x Ar F \ o (b) x }

u {(b, x) e Ar F x Som F | e (b) x }

avec

o (x, b) x, e (x, b) b

o (b, x) b et e (b, x) x

Le graphe f est un arbre si et seulement si F en est un.
Le corollaire (4.3) se déduit par application du critère (4.1) à la situation:

XSom Ê, B1Gu,B2Gv, G(II,a)

L1 Som 01 (u, a), L2 Som 01 (a, v), d ae Som f

1

j (4.4) Corollaire. (Bass-Serre, [Se, § 4]). Soit G un groupe agissant
i sur un arbre T de manière que le graphe quotient G\T soit un segment (arbre
\ comportant une seule arête). Soit a e Ar F, avec o (a) u et e (a)
| Alors, rhomomorphisme Gu *Ga Gv-»induit par les inclusions est un
^ isomorphisme.

i
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Démonstration. L'homomorphisme est injectif par (4.3). Pour démontrer
la surjectivité de *F, on observe que l'arête a se projette sur l'unique arête ä de

G\r, ce qui entraîne que B { u, v } est un ensemble de représentants pour
l'action de G sur Som T. La proposition (2.4) assure alors que G est engendré par
Gu u Rb, avec RB { r e G | il existe sr e Ar T telle que o (sr) e Bete (sr) e rB }.
Soit r e Rb. Comme toutes les arêtes de T sont dans l'orbite de a, il existe hre G

tel que sr hra. De plus, o (sr) o (a) u, d'où hr e Gu. Donc e (sr) rv
hrv, d'où h'1 r e Gv. On en déduit que G est engendré par Gu u Gv,, d'où la

surjectivité de x¥.

5. Critère pour les #7V7V-extensions

Soit F un sous-groupe d'un groupe H. Soit <j) : F - H un homomorphisme
injectif (un autre plongement de F dans H). Désignons par < z > le groupe
cyclique infini de générateur z. Rappelons que l'on définit le groupe
HNN {H, F, (j>) comme le quotient du produit libre H * < z > par la clôture
normale des éléments z_1/z 4> (/)_1 pour / e F. On dit que le groupe H*

HNN (H, F, c|)) est obtenu de H, F et (j> par la construction HNN. Le groupe
H s'appelle la base de H*, z s'appelle la lettre stable et F et cj) (F) sont les sous-

groupes associés [L-S, Chap. IV, § 2]. Nous allons démontrer le critère suivant

pour reconnaître une HNN-extension dans un groupe :

(5.1) Théorème Soit G un groupe, F c H c= G des sous-groupes de

G et zeG tel que z-1 Fz a H. Désignons par $.F^>H
rhomomorphisme <|> (/) z_1/z- On suppose que G agit sur un ensemble

X et qu'il existe des sous-ensembles LF et L^ de X ainsi qu'un élément

de X — (LF u L^) satisfaisant aux conditions suivantes : (notation : LF

LF { d } { d })

1) F cz Gd

2) (H — F) c= LF

3) Z(H-MF))2-TfcLt
4) z'1Lf a Lfet zLç cz Lç
5) z (LF — z~lLF)c Lçet z"1 (L^-zLJ
6) (H-F) n z"1 LP 0 et z (//-<)) (F)) z"1 n zL,,, 0
A/ors, Vhomomorphisme ¥ : HNN (H, I\ (J)) -> G induit par les inclusions (avec

z comme lettre stable) est injectif.
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Démonstration. Soit H* HNN (H, F, En utilisant les relations fz
zcj) (F) et z-1/ (/) z_ 1

pour / 6 F, on peut écrire un élément g eH sous

la forme g - g1f avec / g F et

0i K zE(k) hk_1z8(k-1)...h1z,(1^o (*)

où ht g H et s (0 ± 1, de manière que les conditions suivantes soient vérifiées :

a) h0 e (H — F) v { l }

b) si 8 (0 -1, alors ht g (FF — <(> (F)) u { 1 }

c) si s (0 1, alors ht e (H —F) u { 1 }

d) il n'y a aucune suite zEl z_E.

Si (g) 1 et que g i 1, cela implique que ^ ^ 1 puisque | F est

l'inclusion F c G. Or, si 0! ^ 1, nous allons montrer que (g) d i d. Il suffit

pour cela de montrer que (04) d # d, puisque *¥ (f) d d par l'hypothèse 1).

Décomposons l'écriture (*) de gl en un produit wrwr_i... w0 de sous-mots

tels que :

wo hk (0) zhk (0)-1 z zh0

sous-mot maximal ne contenant pas de symbole « z-1 »

Wi Km-iZ"1 Z"1 hk(0)+1z-1
sous-mot maximal ne contenant pas de symbole z1.

W2 ^k(2) Zhk(2)-l Z — Z^fc(l)+1 Z

sous-mot maximal sans symbole z ~~1

etc., avec k (r) k. Observons que par maximalité de wf, le mot w27- commence à

droite par z (sauf w0) et le mot w2j+1 commence à droite par z"1. Il est possible
que/c 0 ; il est aussi possible que w0 1, mais alors wx i 1 puisque g1 i 1.

Pour alléger la présentation, nous écrirons gxd, wtd, etc., à la place de (gj d,

(wf) d, etc. Le fait que g^d i d va résulter des assertions (A) à (F) suivantes :

(A) WqL^ ci Lf kj L^ si w0 i 1

(B) a Lf si w0 i 1 et ri- 0

(C) w2j— \Lp cz Lp u Lç si vv2j-i i 1

(D) zw2j_1Lf c: si w2j~i i 1 et f i 2j—l
(E) w^z-1^ a Lfkj si w2j- # 1 0'> 1)

(F) ci Lf si w2j i- 1 et ri 2j. (j ^ 1)
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Pour tirer l'inéquation g^d # d des assertions (A) à (F), il suffit d'écrire gq

sous la forme

g1 (w4z"1)(zw3)(w2z"1)(zw1) w0

et l'on déduit que g^deLp u L^

Preuve de (A), (B), (E) et (F). On a déjà observé que si j ^ 1, le mot
wzj commençait à droite par z. Le mot w2jz-1 commence donc par

hki2j.1) + 1e(H-F) u{l}s
ce qui fait que la démonstration de (E) et (F) est identique à celle de (A) et (B) que
nous allons donner: si h0 1, on a h0L^ cz LF ~ z~1LF par les hypothèses 2)

et 6). Ensuite zh0L^ cz z (LF — z~1LF) cz par 5). Si h0 1, on a zL^ cz

par 4), donc de toute façon on a zh0L^ cz L^. Si hx 1, on aura zzh0L^ cz zL^.
On voit qu'en continuant, on aura à chaque pas à appliquer l'une des hypothèses

c= Lp z 1Lp z (Lp z Ep) c= et zL^ cz L^

Il s'en suit l'assertion (A). Si r / 0, cela signifie que uq # 1 et donc hk{0) ^ 1,

puisqu'on a la suite z_1/zM0)z. Dans ce cas, w0L^ cz hk(0)L^ cz LF.

Preuve de (C) et (D). On utilise l'hypothèse 4) z ~1LF cz LF tant que l'on ne

rencontre que des ht égaux à 1. Dans la situation h(z~1 avec ht # 1 (donc ht e H
— c}> (F) par b)), on procède comme suit: hiz~1LF z~1 (zhtz~l) LF. Or
zh(z~ 1Lp cz — zL^ par les hypothèses 3) et 6), d'où htz~1LF cz z"1 (L^ — zL^)
cz Lp par 5). De proche en proche on démontre ainsi (C). Si r =£ 2j — 1, cela

signifie que w2j ¥= 1 et donc hk (2j-^ 1 puisqu'on a la suite z/zfc(2j_1) z-1. On a

alors affaire à la situation

zw2j-_ xlFC: ZZ"1 zhk(2j-_D z"x) <= L* zLç. m

(5.2) Remarque. Il résulte de la démonstration de (5.1) que les hypothèses
de (5.1) peuvent être affaiblies de la manière suivante : on choisit un ensemble RF

(respectivement R^) de représentants de classes à gauche non-triviale de H
modulo F (respectivement : modulo cj> (F)). On peut alors remplacer dans les

hypothèses 2), 3) et 6) (H —F) par RF et (Fl — fy (F)) par R^

(5.3) Corollaire. Soit G un groupe agissant sur un arbre F. Soit

a g Ar r avec o(a) u et e (a) v. Supposons qu'il existe z e G tel que

o(za) v. Alors z'^-G^ cz Gu, ce qui définit un homomorphisme injectif
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<j) ; Ga -> Gu (par <|) (x) z 1xz) et rhomomorphisme *F:: HNN (Gu, Ga, <())

-> G gui étend les inclusions est injectif.

Démonstration. Le fait que z_1Gaz c Gu provient simplement de

l'inclusion Ga c Gv Gzu zGuz_1.

Soit f le premier subdivisé barycentrique de T (voir démonstration de (4.3)

pour les notations). On va appliquer le critère (5.1) à la situation:

X Som f, H Gu, F Ga G(u> a) G(fli

Lf Som ^ (m, a) Som ^ (a, v) d a a Som T

Le lecteur pourra donc visualiser la situation en utilisant la figure 7 de la

démonstration de (4.3) en changeant Ll en LF et L2 en L^. Nous allons vérifier les

points 1) à 6) de l'énoncé de (5.1).

Le point 1) est banal. Le point 2) provient du fait que H —F Gu — Ga et le

point 3) de ce que z (H — 4> {F)) z~1 Gv — Ga. Le point 4) se déduit de ce que

e (z~1 (a, u)) — u et o (z (u, a)) v

Point 5). L'ensemble z (LF — z~lLF) constitue les sommets d'un sous-arbre
relié à v par l'arête t z (u, a). Or t # (a, v) car o (t) i; et e (a, f) p. Donc
z (Lf — z~1Lf) c= L^. Même raisonnement pour l'autre inclusion de 5).

Point 6). Soit h e H — F. Le sous-arbre 4 dont l'ensemble de sommets est

/iL^ est relié à u par l'arête h (u, a), tandis que le sous-arbre B de t dont l'ensemble
de sommets est z" 1LF est lui relié à u par l'arête z"1 (a, v). Or, ces arêtes h (u, a) et

z "1 (a, v) sont distinctes puisque

u o(h (u, a)) e (z~1 (a, p)).

Donc A n B ~ 0. Même raisonnement pour la seconde partie du point 6).

Nous sommes maintenant en mesure de démontrer l'énoncé suivant, dû à

Bass-Serre [Se, p. 50 et aussi § 5].

(5.4) Corollaire. Soit G un groupe agissant sur un arbre T, de

manière que le graphe quotient G\F soit un lacet (graphe comportant
exactement un sommet et une arête). Soit a e Ar T. Alors G est isomorphe à

une HNN-extension de base G0 {a) et dont l'un des sous-groupes associés est Ga.

Démonstration. Posons u o (a) et v e (a). Puisque Som G\T { u },
il existe z g G tel que zu p. On en déduit, d'après le Corollaire (5.3) que z~xGaz

ç Gu et que l'homomorphisme : HNN (Gu, Ga, cj>) —> G qui induit les
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inclusions est injectif (avec <j) (x) z 1xz). D'autre part, d'après (2.4), G est

engendré par

Gu u R{UjV}, où R{UtV} { r g G | il existe ar e Ar T

avec o (ar) g {u,v} et e (ar) e r { u, v }}

Soit r g R{u,v}- Comme toutes les arêtes de T sont dans la même orbite, il existe

dre G tel que ar dra. On a donc

drv drzu g {ru, rv}

Si o (ar) u, on a

dr g Gu ete (ar) rv drv

d'où jj

d'1 r g Gv zGuz~1 ||

Si o (ar) v, on a il

z~1drGGu et ^(z_1ar) z~1drv z~^rv ji

d'où encore d~rr g Gv zGuz~x. Dans tous les cas on déduit donc que r est jj

dans le sous-groupe engendré par Gu et z, d'où la surjectivité de H*. ji

6. Structures bipolaires |

j:

Rappelons qu'une structure bipolaire sur un groupe G est une partition de G j

en cinq sous-ensembles F, EE, E*E, E*E* et EE* satisfaisant aux axiomes 1) à 6) j

ci-dessous, avec les conventions suivantes : Si A et B sont deux sous-ensembles de f

G, on définit l'ensemble j

AB {g ab gG\ügA et bGB] |

et l'ensemble |

A'1 {geG | g'1 g A }. I

Si X g {E,E* }, alors (X*)* X
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Axiomes d'une structure bipolaire :

1) F est un sous-groupe de G

Pour tout X, 7, Z, Xt e{E,E*}ona:
2) (XY)F a XY.

3) {XY)'1 a YX.

4) (XY)(Y*Z) a XZ.

5) Pour tout g e G, il existe un entier n (g) tel que si g g{g2 ». gk avec

gt g Xf- Xt pour i ^ 1, alors k < n {g).

6) E*E # 0.

Cette définition d'une structure bipolaire est la généralisation due à Lyndon-
Schupp [L-S, IV.6] du fameux concept de Stallings [St]. Remarquons que dans

cette version, on ne demande pas que F soit un sous-groupe fini.

(6.1) Théorème. Soit G un groupe agissant sur un arbre T. Soit peG
un élément ne laissant aucun sommetfixe. Alors G admet une structure bipolaire
avec p g E*E u EE*.

Démonstration. Puisque p ne laisse aucun sommet fixe, il existe, par (3.3),

une chaîne infinie Cp stable par p et sur laquelle p opère par translation non-
triviale. On peut supposer qu'il existe a g Ar Cp telle que pae & (a). Si ce n'est

pas le cas, on change p en p-1, ce qui n'a pas d'importance puisque

p g E*E u EE* si et seulement si p-1 g E*E u EE* par l'axiome 3.

On définit alors F Ga et les autres ensembles sont déterminés par les

conditions suivantes :

h g EE u EE* <=> ha e 01 (a)

h g EE* u E*E od(o {a\ o {ha)) d(e {a\ e {ha))

ce qui peut se visualiser de la manière suivante :

r g EE

s g EE*

t g E*E

u g E*E*

Fig. 8.
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Il est clair que l'on a ainsi une partition de E. Les axiomes 1 et 2 sont banals.

L'axiome 3 se vérifie par inspection facile des huit cas possibles. Par exemple,

pour (EE) (E*E) cz EE, soit g e E*E et he EE. On utilise le principe que hga est

relié à ga comme ga est relié à a, ce qui donne la figure suivante d'où l'on déduit

que hg e EE :

La vérification de ces huit cas montre que si h e XY et g e Y*Z, alors

d (hga, a) > à (ga, a),

ce qui permet de vérifier l'axiome 5 en posant n(g) d (ga, a). Enfin, p e E*E,
d'où l'axiome 6.

(6.2) Corollaire. Un groupe de génération finie qui agit sur un arbre F

sans sommet fixe (i.e. (Som T)G 0) admet une structure bipolaire.

Démonstration. Par [Se, Cor. 3, p. 90], il existe un élément g e G qui ne

laisse aucun sommet fixe. On applique alors (6.1).

Nous allons maintenant donner notre démonstration du théorème de

Stallings-Lyndon-Schupp :

(6.3) Théorème. Un groupe G admet une structure bipolaire si et

seulement si G est un produit amalgamé non-trivial ou une HNN-extension.

Démonstration. Si G est isomorphe à B1 *AB2 (respectivement: si G est

isomorphe à HNN (H, A, ((>)), alors il existe un arbre F sur lequel G agit de telle

manière que les groupes d'isotropies des sommets soient les conjugués des Bt

(respectivement : les conjugués de H) et les groupes d'isotropie des arêtes soient

les conjugués de A (voir [Se, pp. 49-50 ou § 5]). Tout élément qui n'appartient

pas à l'un de ces conjugués agit donc sur F sans sommet fixe, d'où G, par (6.1),

peut être muni d'une structure bipolaire (F, EE,...) avec A F.

La démonstration de la réciproque nécessite quelques préliminaires. Par

définition, un élément g e XY est dit irréductible si g ^ ab, avec aeXZ et
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beZ*Y. L'ensemble des éléments irréductibles de XY est noté I (XY). Nous

avons besoin des lemmes classiques sur les éléments irréductibles sous une forme

légèrement plus précise que celle de [L-S, p. 209], aussi nous les redonnons ci-

dessous complètement avec leur démonstration.

Lemme 0. I (XY)~1 <= I (XY).

Démonstration. Soit g e I (X7). On a g'1 e YX par l'axiome 3. Si g'1
ab avec a eYZ et be Z*X, alors g b~ 1a~1 e (XZ*) (ZY) par l'axiome 4,

ce qui contredit l'irréductibilité de g. H

Lemme 1. (X7) I (YZ) a F u XE u XE* en général et

(XY)I(YZ) a XEv XE* si

Démonstration. Soit g e XY et h e I (YZ). Si gh e X*U, alors

heg'1 (X*U) <= (YX)(X*U)

ce qui contredit l'irréductibilité de h. Si gh f e F, alors

YZ hf'1 g'1 e YX

par les axiomes 2 et 3, d'où X Z.

Lemme 2. I (XY) (YZ) œ F v EZ v E*Z en général et

I(XY)(YZ) œ EZ u E*Z si X^Z.
Démonstration. Identique à celle du lemme 1.

Lemme 3. I (XY) I (YZ) a F v I (XZ) en général et

/ (XY) I (YZ) a I (XZ) si X jk Z

Démonstration. Après les lemmes 1 et 2, il suffit de montrer que si g e I (X 7)
et he I (YZ), alors gh est irréductible si gh§ F (ce qui implique que gh e XZ).
Supposons que gh pq, avec p e X W et q e W*Z, d'où g pqh~1. D'après le

lemme l^qh'1 appartient soit à W*U, ce qui contredit l'irréductibilité de g, ou
alors qh'1 e F, mais ceci nécessite que W 7*. Dans ce dernier cas, on aurait

g p(qh~1)e(XY*)F a XY*

par l'axiome 2, d'où g e XY* n XY ce qui est impossible puisque XY* n XY
0-
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Lemme 4. / (XY) F u FI (XY) c I (XY).

Démonstration. Si g e I (XY) et / g F, alors gf e XY par l'axiome 2. Si #/
pq avec p g ZW et 4 g W* Y, on aurait g p (qf~x) g (XW) (W*Y) ce qui

contredit l'irréductibilité de g. D'où I (XY) F œ I (XY), ce qui entraîne

g~if~1eI(YX) par le lemme 0 et l'axiome 1. Cela implique fg e I (X Y) par le

lemme 0 et donc FI (XY) c I (Z Y).

Voici encore un lemme qui ne semble pas se trouver dans la littérature:

Lemme 5. I (XW) (W* Y) n I (XW*) (WY) 0.
Démonstration. Supposons que gu hv, avec

gel(XW), ue W*Y, heI(XW*) et veWY.

Alors, les lemmes 0 et 3 ainsi que l'axiome 4 entraînent que

WY 3 (h~1g) ue I (W*X) I (XW) (W*Y)

ci I(W*W)(W*Y) a W*Y

ce qui est impossible puisque WY n W*Y 0.
Nous pouvons maintenant poursuivre la démonstration de (6.3). L'axiome 2

montre que la partition (F, EE,...) de G induit une partition en cinq sous-

ensembles { T }, EE, E*E, EE* et E*E* de l'ensemble G/F des classes à gauche de

G modulo F.

Soient Bi F u I (EE) et B2 F u / (E*E*). L'axiome 1 ainsi que les

lemmes 0, 3 et 4 impliquent que Bt est un sous-groupe de G. On a donc un
homomorphisme W : B1*FB2 -> G qui étend les inclusions de B{ dans G.

Affirmation : W est injectif. Cela se démontre en appliquant le critère (4.1) à la
situation :

X G/F, d I,
Lf ££ u KË* Ë*Ë u E*E*

La condition 1 de (4.1) est banale et la condition 2 se vérifie facilement:

(B1 — F) F*X c= (EE) Ë*X c £Z c L1 (axiome 4).

Idem pour (B2 — F)) (L1 O { d }) ^ L2
L'axiome 5 entraîne que G est engendré par les éléments irréductibles. Donc,

si l'on suppose que I (E*E) 0, cela implique que / (EE*) ® par le lemme 0

et ¥ est surjectif. On a donc G B1*FB2 et l'axiome 6 empêche que F Bt
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(donc le produit amalgamé est non-trivial). En effet, si par exemple F B2, alors

G F u EE ce qui est impossible puisque E*E ^ 0.
Il reste à examiner le cas où / (E*E) ^ 0. Soit donc z e I (E*E) et posons H
Bv On a, par les lemmes 3 et 4:

z~1 / (E*E) c I (EE*) I (E*E) cz H

I (EE*) z cz I (EE*) I (E*E) cz H
z'1 I (E*E*) z a I (EE*) I (E*E) I (EE) cz H

ce qui montre que G est engendré par z et H (puisque l'on a déjà vu que G est

engendré par les éléments irréductibles). D'autre part, par les lemmes 3 et 4, on a

z~1 Fz a I(EE*)I(E*E) c H

Soit (j> : F H l'homomorphisme injectif défini par (j) (x) z~1xz. On a donc
un homomorphisme Ç : HNN (H, F, ((>)- G qui étend l'inclusion de H dans G et

qui est surjectif. On va démontrer l'injectivité de Ç en appliquant le critère (5.1) à

la situation :

X G/F d ï
Lf ËË u ËË* Ë*Ë u E*E*

Il faut vérifier les conditions 1 à 6 de (5.1):

Point 1 Banal.

Point 2). (H — F)E*X a (EE) E*X a EX (axiome 4).

Point 3). Observons que zHz "1 cz I (E*E) u F par les lemmes 3 et 4. Mais
si zhz~1 e F avec he H, alors h e z~YFz (j) (F). Donc

z(H-^(F))z~1 cz E*E*

et le point 3) se démontre comme le point 2).

Point 4). Se démontre comme le point 2).

Point 5). L'axiome 5 implique que

EX I (EE) E*X u I (EE*) EX

Or I (EE*) z cz H par le lemme 3, d'où / (EE*) cz Hz'1. On a donc

z (ËX) zl (EE) (Ë*X) u zHz ~1 (ËX).

Par le lemme 3, on a

zl (EE) (Ë*X) cz I (E*E) I (EE) (Ë*X) c Ë*X cz L*
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Soit x hz 1v avec he H çt v e EX. Par les lemmes 3 et 4, on a

z/zz"1 g/(£*£*) u F

Si zhz~1 g / (£*£*), on aura zx g E*X <± L^ par l'axiome 4. Or, ce dernier cas se

produit toujours si x^z_1LF, puisque si z/zz-1gF, on a hez~1Fz et

x e z~1F (EX) ci z~xEX a z~xLF (le fait que F (EX) c= EX provient des

axiomes 2 et 3). Idem pour la seconde partie du point 5.

Point 6).

(H-F)Ë*X n z~lÊY a I (EE)Ë*X

n / (££*) KY 0
par le lemme 5. Idem pour la seconde partie du point 6), en utilisant le fait vu au

point 3) que z (H — $ (F)) z~1 / (£*£*).
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