Zeitschrift: L'Enseignement Mathématique
Herausgeber: Commission Internationale de I'Enseignement Mathématique

Band: 27 (1981)

Heft: 1-2: L'ENSEIGNEMENT MATHEMATIQUE

Artikel: SUR L'USAGE DE CRITERES POUR RECONNAITRE UN GROUPE
LIBRE, UN PRODUIT AMALGAME OU UNE HNN-EXTENSION

Autor: Hausmann, Jean-Claude

DOl: https://doi.org/10.5169/seals-51750

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 24.01.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-51750
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

SUR L’USAGE DE CRITERES
POUR RECONNAITRE UN GROUPE LIBRE,
UN PRODUIT AMALGAME OU UNE HNN-EXTENSION

par Jean-Claude HAUSMANN

INTRODUCTION

Soit G un groupe agissant sur un ensemble X et soit H un sous-groupe de G. Il
existe dans la littérature divers critéres pour décider si H est un groupe libre, un
produit amalgamé ou une HN N-extension, ceci a I'aide de conditions sur I’action
de G sur X. Le lecteur trouvera un résumé de ces travaux aux pages 167-169 du
§ 1I1.12 de [L-S].

Le but principal de cet article est de montrer le profit que 'on peut tirer de
critéres analogues lorsque X est un arbre. Nous présentons ainsi dans le §'3 une
simplification de la démonstration combinatoire de Serre qu’un groupe est libre
il agit librement sur un arbre [Se, § 3.3]. Nous obtenons aussi quelques
résultats sur la liberté de certains sous-groupe du groupe d’automorphismes d’'un
arbre. :

Les sections 4 et 5 sont consacrées 4 la détection des produits amalgamés et
des HN N-extensions, avec des criteres différents de ceux indiqués dans [L-S]. On
obtient ainsi une démonstration simple des théorémes de Bass-Serre affirmant
qu’un groupe qui agit sur un arbre de maniere que le graphe quotient ait
exactement une aréte est un produit amalgamé non-trivial ou une HNN-
extension.

Cet article se termine par un nouvel éclairage sur les structures bipolaires de
Stallings [St], dans leur version généralisée par Lyndon-Schupp [L-S, IV.6]. On
donne une nouvelle démonstration du théoréme de Stallings qu'un groupe
admet une structure bipolaire si et seulement si il est un produit amalgamé non-
trivial ou une HN N-extension.') Dans un sens, on démontre quun groupe qui

1) Cerésultat fut utilisé par Stallings dans sa preuve originale du théoréme de structure
pour les groupes a une infinité de bouts. Par ailleurs, d’autres démonstrations de ce
théoréme de structures furent ensuite trouvées, qui utilisent la théorie de Bass-Serre (voir

[Du], [S-W,§6], par exemple). Mais ces preuves n’utilisent plus le passage par les
structures bipolaires.
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agit sur un arbre avec un élément qui agit sans sommet fixe admet une structure
bipolaire. Or un produit amalgamé non-trivial ou une HN N-extension agit
toujours sur un arbre de cette fagon par la réciproque du théoréme de Bass-Serre
cité¢ plus haut. L’autre direction s’obtient par un usage de nos critéres.

Les résultats présentés ici constituérent quelques chapitres d’un cours de
2° cycle donné par Pauteur a I'université de Genéve pendant I'année acadé-
mique 1979-1980. Je tiens a remercier P. de la Harpe pour de trés utiles conver-
sations.

2. DEFINITIONS ET GENERALITES
SUR LES ACTIONS DE GROUPES ET LES GRAPHES

(2.1) Soit G un groupe agissant sur un ensemble X. Sauf mention du
contraire, une telle action est toujours a gauche. L’ensemble des orbites est noté
G\X. Pour x € X, on définit comme de coutume le groupe d’isotropie G, de x:

G, ={geGlgx = x}

et on dit que I’action est libre si G, = { 1 } pour tout x € X. Un sous-ensemble
de X qui contient exactement un représentant par orbite est appelé un ensemble
de représentants pour l'action de G sur X.

(2.2) Un graphe T" est une paire d’ensembles (Som I', ArI'), appelés
'ensemble-des sommets et 'ensemble des arétes de I', munis de deux applications
o,e:ArI" - Som I (origine et extrémité). Comme d’habitude, on rend compte
de cette donnée par un dessin ou une aréte a est un arc orienté allant de o(a) a
e(a) ; ce dessin correspond a la réalisation géométrique du graphe qui est un CW-
complexe de dimension 1.

Une action d’un groupe G sur un graphe I" est une action de G sur Som I et
sur Ar I" telle que

ofga) = go(a) et e(ga) = ge(a)

pour tout ae ArI' et tout g € G. Les applications o et e passent alors aux
quotients G\Som I" et G\Ar I" ce qui donne un graphe quotient G\T.
(2.3) Chemins dans un graphe. On appelle CH,, tout graphe satisfaisant a:

“Som CH, = {0,1,2,..,n}
Ar CH, = {[0, 11, [L, 2], ..., [n—1,n] N
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Tte] [12) [t (3.6 (0,1) [1,2) (2.3 [3.4]

FiG. 1. — Deux graphes de type CH,

Un chemin (de longueur n) dans un graphe I' est un morphisme de graphe
¢:CH, - I.Siaethe Som I' sont dansI'image de Som CH, par c,ondit quele
chemin ¢ relie a a b. Cette notion de chemin définit celle de connexité et de
composante connexe d’un graphe.

Le lecteur aura remarqué la non-unicité du modéle CH,, qui provient bien
entendu de ce que nous travaillons dans la catégorie des graphes orientés. On
peut contourner cette difficulté technique en doublant formellement chaque
aréte, comme dans [Se]. Mais cela rendrait d’autres points plus compliqués et
notre solution, malgré cette petite imperfection formelle, nous a paru permettre
une exposition plus légere.

(24) Si U et V sont deux sous-ensembles de Som I', la distance d (U, V)
entre U et V est I'entier positif ou nul définit comme le minimum des longueurs de
chemins reliant un point de U a un point de V. Pour u, v € Som I', on usera des
allegements de notation:

dw, V) =d{u}, V) et duv)=d{u},{v}).

(2.4) PROPOSITION. Soit G un groupe agissant sur un graphe connexe T,
et soit U < Som I un ensemble de représentants pour I'action de G sur
SomI" Soit ueU. Alors G estengendré par G, Ry, ou Ry est défini

par: ‘

= {reG|il existe ae Ar T telle que 0 (@) € U
ete(a)erU }

Démonstration. Soit H le sous-groupe de G engendré par G, U Ry. Soit
g € G. On va démontrer que g € H par récurrence sur la distance d (U, gu). Si
d(U,gu) = 0, cela signifie que gue U. Comme U est un ensemble de
représentants, cela n’est possible que si gu = u, auquel cas g € G, < H.

Prenons donc comme hypothése de récurrence que h € H pour tout h € G tel
que d (U, hu) < d. Soit g € G satisfaisant a d (U, gu) = d+ 1. Soit c: CH,;,
— ' un chemin reliantve Ud gu. Onaalorsc ({0,1}) = { v, x }, avec x ¢ U.
Soientr e Get p e U tels que x = rp, et dénotons par a l'aréte ¢ ([0, 1) e ArT.
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Supposons que e (a) = x. Par hypothése, on a alors r € Ry. Le chemin
¢': CH; —» I défini par ¢’ (k) = r~! ¢ (k+1) sur les sommets et

¢ ([k k+1]) = ¢ ([k+1, k+2])

sur les arétes relie p € U a r~ *gu. On en déduit par I’hypothése de récurrence que
r lge H,dou g e H.

Dans le cas ou o(a) = x, on a alors r~' € Ry puisque o (r 'a) = p et
e (r"'a) = r~!'p. Le méme raisonnement que précédemment montre que rg € H,
dougeH. ]

(2.5) Arbres. Un arbre I est un graphe connexe tel que pour toute aréte a de
I', le sous-graphe maximal I', de I" qui ne contient pas ’aréte a est non-connexe.
On vérifie alors que I', est formé de deux composantes connexes, I'une contenant
o (a) et autre contenant e (a). Nous appelerons 4 (a) la composante connexe de
I", qui contient e (a) (« branches de a ») et Z (a) (« racines de a ») celle ou se trouve
o (a). (L’aréte a est momentanément pressentie comme étant le « tronc » de
l'arbre). Les sous-graphes 4 (a) et Z (a) sont des sous-arbres de I'. Si g est un
automorphisme de I', on a g% (a) = % (ga) et g&# (a) = X (ga).
 Notre définition d’un arbre est évidemment équivalente a celle plus courante
d’un graphe sans circuit ou d’'un graphe dont la réalisation géométrique est
contractile. |

(2.6) Chaines infinies. On définit les graphes CH ., de la méme maniére que
CH,, sauf que Som CH, = Z. Une chaine infinie d'un graphe I' est un
morphisme ¢ : CH_, — I qui est injectif sur les ensembles de sommets et d’arétes
(condition qui n’est pas requise dans la définition d’un chemin).

(2.7) Si G est un groupe qui agit sur un graphe connexe I', on peut toujours
trouver un ensemble de représentants de I'action de G sur Som I' qui soit
I’ensemble des sommets d’un sous-arbre 4 de I'. C’est un relevé d’un arbre
maximal de G\I'. Pour une démonstration de ces faits, voir [Se, § 3]. L’arbre 4
s’appelle un arbre de représentants, mais nous attirons I'attention du lecteur que
Ar A n’est pas un ensemble de représentants pour l'action de G sur Ar I
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3. CRITERE POUR GROUPES LIBRES
Il s’agit du critere suivant:

(3.1) PROPOSITION. Soient G un groupe agissant sur un ensemble X, B
un sous-ensemble de G et H le sous-groupe de G engendré par B.
Supposons qu’il existe une collection L, (v e B) de sous-ensemblesde X et un
| clément d de X — U L, telsque b"(L,v {d}) < L, pour tout b et

veB

veB avec b # v ettout neZ — {0}. Alors H est libre de base B.

! Démonstration. Soit w = v/}' v5? ... vi*, avec v; € B, n; € Z et v; # v; 4. On
b sait que H est libre de base B si, pour tout élément w satisfaisant aux conditions
‘ ci-dessus, I’équation w = 1 n’est possible que sin; = 0 pour tout i (conséquence
de [L-S, Chap. 1, Prop. 1.9], par exemple). Or, les hypotheses de (3.1) impliquent
que wde L, . Comme d & L,,onawd # d, douw # 1. ]
Le critere (3.1) est un cas particulier d’un énoncé de Tits [Ti 2, Prop. 1.1]
(énoncé qui sera lui-méme généralisé au § 4). Mais son usage implicite est plus
f ancien. Dans [F-K, pp. 190-194] ou [Le, pp. 118-120], on Iutilise pour
' démontrer la liberté des groupes de Schottky: soient (P;, Q;) m paires de cercles
dans C tels que tous les cercles soient extérieurs les uns aux autres. Soient
| b,:CU {0} > Cu{cw} des transformations de Mobius telles que b,
§ (extérieur (P)) < intérieur (Q,), (i=1, ..m). On déduit qur les b, engendrent un
B groupe libre de rang n dans le groupe de Mdbius en appliquant (3.1) & L,
| = intérieur (P;) U intérieur (Q;) et d = oo.

| Nous allons maintenant utiliser notre critére (3.1) pour donner une nouvelle
| démonstration du théoréme de Serre [Se, Théoréme 4, § 3.3]:

| (3.2) THEOREME. Soit G ungroupe agissant librement sur un arbre T' et
| soit A unarbre de représentants. Alors G est libre de base R, 4 (Voir (2.4)).

Démonstration. Comme l'action est libre, G est engendré par Ry, ,,, 4 €n vertu
de (2.4). Puisque A4 est connexe et que I' est un arbre, il existe, pour chaque
r € Rgom 4 Une unique aréte a, € Ar I telle que o (a,) € Som A et e (a,) e r Som A.
On va appliquer le critere (3.1) a la situation:

X =SomI' L, =Som%(,)uwSom®RZ(r 'a) deSomA
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Soit M, = Som A U [u Ls] (re Ry, 4)- On déduit de la définition de
SFr

Rg.m 4 que lorbite de a, ne contient aucune des arétes de 4 et que
M, cB(r ta)nR(a,).
Il s’en suit que, pour tout n > 0, on a
"M, c QZ(a,) cL et r"M,c Z(r 'a)c L,. |

Rappelons maintenant la classification de Tits [Ti, Proposition 3.2] des
automorphismes d’un arbre:

(3.3) PROPOSITION. Soit g un automorphisme d’un arbre T'. Alors, g
posséde l'une des deux propriétés suivantes (qui s'excluent mutuellement ) :

1) g laisse fixe un sommet de T;

2) il existe une unique chaine infinie C, de I' stable par g et surlaquelle g
agit par translation non-triviale.

Remarque. Comme nos graphes sont orientés, le cas (ii) de la proposition
3.2 de [Ti] ne se produit pas. C’est pourquoi il n’y a que deux possibilités dans
(3.3).

(3.4) PROPOSITION. "Soient g et h deux automorphismes d'un arbre T'
qui ne laissent aucun sommet fixe. Alors, si ArC,nArC, = @, les
automorphismes g et h engendrent un sous-groupe libre de rang 2 dans le
groupe Aut T des automorphismes de T
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Démonstration. Deux cas peuvent se présenter :
a) SomC,nSom C, = {v} < Som [}
} b) Som C,nSom C, = Q.

. . . ~ /
Envisageons tout d’abord le cas a), et supposons qu'’il existe des arétes a,, a; € C,
et a,, a, € C, satisfaisant aux conditions suivantes:

o(a) =e(@) =v=o(a)=ela),
ga,e B(a,) et ha,eRB(a,).

Cette supposition est anodine car, dans les autres cas, la démonstration serait
identique apres adaptation des notations: changement éventuel de « o ( ) » en
| «e ()», de «ZB» en « A », etc. De la méme maniére que dans (3.2), la
proposition (3.4) est une conséquence du critére (3.1) appliqué a la situation:

X =SomI', d=v
L, = Som % (a,) v Som % (a;)
L, = Som % (a;) U Som Z (a;)

o AN AN
Ly 0 \
- q, ag R 8 Y ///
~Z ’ V —4 ="
S yayeva
Lﬂ \ h [/ LL‘ p
' h
Cq % /
AN N\
FiG. 3.

Dans le cas b), soit ¢ : CH, — I" un chemin minimal reliant C ;4 C;. On peut
supposer que ¢ (0) € C, et c (n) € C,, les autres cas donnant des démonstrations

identiques & changement de notations prés. On applique alors le critére (3.1) a la
situation :

X = SomT, deSomc(CH,) — {c(0),c(n)}
L, = Som Z(c([0,1])), L, = Som & (c ([n —1, n]))
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FiG. 4.

La seule difficulté est que le choix du sommet d ci-dessus n’est pas possible si
n = 1. Ce cas facheux s’évite facilement en passant au premier subdivisé
barycentrique de I'. ]

(3.5) PROPOSITION. Soient g, et g, deuxautomorphismesdunarbre T
qui ne laissent aucun sommet fixe. On suppose que ¢g; induit une translation
d’amplitude k; sur sa chaine C; = C, et que

Card (ArC; nArC,) = g < «©.

Soient r et s deux entiers saiisfaisant a rk;, > q < sk,. Alors, les
automorphismes ¢y et g5 engendrent un groupe libre de rang 2 dans Aut T

Démonstration. Puisque I' est un arbre, le graphe C; n C, est connexe; il
s’agit donc d’'un chemin B de longueur q. On peut supposer que la premiere aréte
ade B a son origine a I’origine de B et que g; a € % (a) (les autres cas donnent lieu
a des arguments identiques). De méme, on peut supposer que les arétes
a; € Ar C, et a, € Ar C, « précédant » a sont orientées de fagcon que e (a,)
= e(a,) = o(a). L’hypothese rk, > q < sk, implique que

B c (93 (a;) N 2 (g} a1)) a (,@ (ay) N 2 (g5 az)) .

On va appliquer le critere (3.1) a la situation:
X = Som I d = e(a)

L, = Som Z (a,) v Som % (g} a,)
L, = Som % (a,) v Som £ (g5 a,))
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FiG. 3.

On vérifie les hypothéses de (3.1) comme pour la démonstration de (3.2), en
‘utilisant que '
§ Lyu{d} c #B(a,) nR(g3 ay)

‘:et
Lzu{d}Cﬁ(al)m;%(g’lal). : [

(3.6) Exemple. Considérons Paction habituelle par transformations
'homographiques du groupe SL,(Z) sur le demi-plan de Poincaré
'H = {zeC|Imz > 0}. L’orbite de I'arc de cercle

a={z=¢e%n2<z<2n/3)}

8 arbre (voir figure 6 ci-dessous).

1 .
Soient g = ((1) D et h = ( ) (l))’ c’est-a-dire, en termes de

transformations homographiques: g(z) = z + l et g(z) = z—% On vérifie

B par calcul direct que ga, g~ 'a, ha et h™ 'a sont les arétes dessinées sur la figure 6:

[V
ga. a 4 g«
ha
4
ha
ll ‘\" B Al -
-1 o 4 2
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On en déduit que g et h translatent avec amplitude 2 des chaines C, et

respectivement C,, et C, n C, contient l'aréte a ainsi que sa transformée par
0 —1 . L : :

( 1 O)’ La proposition (3.5) implique alors le fait (classique) que g2 et h?
engendrent un groupe libre de rang 2 dans SL, (Z). Observons que le sous-
groupe de SL, (Z) engendré par g et h* n’est pas libre, comme en témoigne la
relation (gh~?)* = 1. Ceci montre que I'hypothése rk, > q < sk, de (3.5) est
essentielle.

4. CRITERES POUR PRODUITS AMALGAMES

Soit B;, i € J, une famille de sous-groupes d’'un groupe G et soit F un sous-

groupe de N B;. Lesinclusions B, = G s’étendent en un unique homomorphisme
ieJ
¥: *.B;, - G, ou *:B; dénote le produit de tous les B; amalgamé sur F.

(4.1) PROPOSITION. Soient B;,, G et F comme ci-dessus. On suppose que
le groupe G agit sur un ensemble X et qu’il existe une famille L;(ieJ) de

sous-ensembles de X et un élément de X — U L; tels que:
ieJ

1) FcG,
2) (Bi—F)(L;u {d}) < L, pour tout i, je J avec i # j.

Alors, Thomomorphisme W¥:*pB; - G induits par les inclusions B; = G est
injectif.

Démonstration. Tout élément g € *B,; peut s’écrireg = g, f avec f € Fet .
g, = byb,_; ... by, ou les B, sont des €léments de B; 4, — F, avec i (k)e Jet
i(k) #i(k+1).Si¥(g9) = letg # 1,celaentrainequeg, # 1, puisque Y| F
est injectif. Mais alors, sig; # 1, nos hypotheses font que ¥ (g)de L; . Comme
d ¢ L; ), cela montre que ¥ (g) # 1, dou ¥ est injectif. B

(4.2) Remarques. 1) 11 résulte de la démonstration ci-dessus que
Phypothése 2) de (4.1) peut étre affaiblie en: X, (L; U {d }) = L, pour tout i,
je Javeci # j,ou X;est un ensemble de représentants des classes a gauche non-
triviales de B; modulo F.

2) Le cas F = 1 redonne la Proposition 1.1 de [Ti 2].
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(4.3) CoOROLLAIRE. Soit G un groupe agissant sur un arbre I'. Soit
aeArI” avec o(@ =u e e(a)=v.  Alors, T'homomorphisme

¥:G,*s;, G, = G induit par les inclusions dans G des groupes d’isotropie de
u,v et a est injectif.

. Démonstration. Soit I le premier subdivisé barycentrique de I". Rappelons
i que le graphe I peut étre défini par:

SomI' = SomTI'u Ar T
Arl = {(x,b)eSomT x ArT|o(b) = x}
U{(,x)eArT x SomTI'|e(b) = x}

avec
| o(x,b) =x, e(x,b)=b,
] olb,x) =b et e(b,x) = x.

- Le graphe I est un arbre si et seulement si I' en est un.
Le corollaire (4.3) se déduit par application du critére (4.1) a la situation:

X =SomI, B, =6G,, B, =0,, F=0G,= Gy =Gy,
L, = Som % (u,a), L, = Som%#B(a,v), d = aecSomI

FiG. 7.

(4.4) COROLLAIRE. (Bass-Serre, [Se, §4]). Soit G un groupe agissant
3 surun arbre I' de maniére que le graphe quotient G\I' soit un segment (arbre
| comportant une seule aréte). Soit ae ArT, avec o(a) = u et e(a) = v

, . o . :
Alors, Phomomorphisme ¥: G, *6. G, = G induit par les inclusions est un
isomorphisme.

PR BT N
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Démonstration. L’homomorphisme W est injectif par (4.3). Pour démontrer
la surjectivité de ¥, on observe que 'aréte a se projette sur I'unique aréte a de
G\I', ce qui entraine que B = { u, v } est un ensemble de représentants pour
'action de G sur Som I'. La proposition (2.4) assure alors que G est engendré par
G, U Rg,avec Ry = {re G|ilexistes, € Ar I'tellequeo (s,) e Bete(s,) erB }.
Soit r € Rg. Comme toutes les arétes de I" sont dans I'orbite de a, il existe h, € G
tel que s, = h,a. De plus, 0(s,) = 0(a) = u, d’ou h,e G,. Donc e(s,) = rv
= h,, dou b ! r € G,. On en déduit que G est engendré par G, U G,, d’ou la
surjectivité de V. ]

5. CRITERE POUR LES H N N-EXTENSIONS

Soit F un sous-groupe d’un groupe H. Soit ¢: F - H un homomorphisme
injectif (un autre plongement de F dans H). Désignons par < z > le groupe
cyclique infini de générateur z. Rappelons que l'on définit le groupe
HNN (H, F, ) comme le quotient du produit libre H * < z > par la cloture
normale des éléments z7'fz ¢ (f)"! pour f € F. On dit que le groupe H*
= HNN (H, F, ¢) est obtenu de H, F et ¢ par la construction HNN. Le groupe
H s’appelle la base de H*, z s’appelle la lettre stable et F et ¢ (F) sont les sous-
groupes associés [ L-S, Chap. 1V, § 2]. Nous allons démontrer le critére suivant
pour reconnaitre une HN N-extension dans un groupe:

(5.1) THEOREME Soit G un groupe, F <« H = G des sous-groupes de
G et zeG tel que z71 Fz c H. Désignons par ¢:F - H
Phomomorphisme & (f) = z~'fz. On suppose que G agit sur un ensemble
X et quil existe des sous-ensembles Ly et L, de X ainsi qu'un élément
de X — (Lp v L) satisfaisant aux conditions suivantes: (notation: Ly
=Lyu{d}L,=L,u{d})

1) F c G,
2) (H-F)L, < Ly

3) z(H—0(F)z 'Ly < L,

4 z7 'Lpc Ly e zL,c L,

5 z(Lg—z L) = I, et z '(Ly—zLy) < Lg

6) H-F)L,nz 'Ly=Q¢ e z(H-¢6F)z 'LinzL, =@

Alors, Thomomorphisme W¥: HNN (H, F, d) —» G induit par les inclusions (avec
z comme lettre stable) est injectif.
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Démonstration. Soit H* = HNN (H, F, ¢). En utilisant les relations fz
— zd (F)etz 1f = ¢ (f) z " pour f € F,on peut écrire un élement g € H sous
laforme g = g,f avec f e F et

- *
gl = hk Za (k) hk—l Za (k=1) _— hlze(l) ho ( )
ouh;e Hete (i) = + 1,demaniére que les conditions suivantes soient vérifiées :

hoe(H—F)u {1}
si () = —1,alors e H—¢(F)u{l}
si €() =1,alors e H-F)u{l}

€

il n’y a aucune suite z°1 z~°

g o g &

Si ¥(g9) = 1 et que g # 1, cela implique que g; # 1 puisque V¥ | F est
Pinclusion F < G. Or, si g, # 1, nous allons montrer que ¥ (g) d # d. Il suffit
pour cela de montrer que ¥ (g,) d # d, puisque ¥ (f) d = d par ’hypothese 1).

Décomposons I’écriture (*) de g, en un produit w,w,_; ... wo de sous-mots
tels que:

WO — hk (0) th (0)—1 Z s Zho

sous-mot maximal ne contenant pas de symbole « z7*

»

-1 -1

_ — 1 -1
Wl = hk(l)z hk(l)_lz von L hk(0)+12

sous-mot maximal ne contenant pas de symbole z'.

W2 —_ hk (2) th 2)—1 Z i th(1)+1 zZ

sous-mot maximal sans symbole z~?

etc.,aveck (r) = k. Observons que par maximalite de w;, le mot w,; commence a
droite par z (sauf wg) et le mot w,;, ; commence a droite par z~*. Il est possible
que k = 0;1l est aussi possible que w, = 1, mais alors w, # 1 puisque g, # 1.

Pour alléger la présentation, nous écrirons g,d, wid, etc.,ala placede ¥ (g,) d,
¥ (w)) d, etc. Le fait que g,d # d va résulter des assertions (A) a (F) suivantes:

(A) wol_,:b cLpulL, si wy,#1

(B) woL, = Ly si wo#1 et r#0

(C) wyjoyLpc LeU Ly, si wy_y #1

(D) zw,;_ Ly = L, si wyog # 1 et f #2j—1
(B) wyz 'Ly« Lru Ly si wy; # 1(G.>1)

(

)
F) wyz7'Lyc Lp si wy; #1 et r#2.(G=1)

J
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Pour tirer I'inéquation g,d # d des assertions (A) a (F), il suffit d’écrire g,
sous la forme

g1 = . (Waz™ ") (zw3) (Woz ™) (zwy) wo

et 'on déduit que g;d € Ly U L,

Preuve de (A), (B), (E) et (F). On a déja observé que sij > 1, le mot
w,; commengait a droite par z. Le mot w,;z~ ' commence donc par

hk(2j—1)+1 e(H-F)u { 1 } s

ce qui fait que la démonstration de (E) et (F) est identique a celle de (A) et (B) que
nous allons donner: si hy # 1, ona hyL, = L,— z~ 'L par les hypothéses 2)
et 6). Ensuite zhoL, < z(Lg—z 'Lg) < I, par 5). Si hy = 1, on a zL, = L,
par 4), donc de toute fagon on a zhyL, < L, Si h, = 1, on aura zzh,L, < zL,.
On voit qu’en continuant, on aura a chaque pas a appliquer I'une des hypothéses

hl.l_d¢ C LF'—Z_ILF, Z(LF—Z_ILF) - L¢ Ct Zl_4¢ c L¢ .

Il s’en suit I'assertion (A). Sir # 0, cela signifie que w, # 1 et donc hy ) # 1,
puisqu’on a la suite z~ 'k, ,z. Dans ce cas, woL, = hy o)Ly < Lp.

Preuvede (C)et (D). Onutilise 'hypothése4)z 'L, = Ltantquel’onne
rencontre que des h; égaux a 1. Dans la situation h;z~ ' avec h; # 1(donc h; e H
— ¢ (F) par b)), on procéde comme suit: hz 'Ly = z7 ' (zh;z" ') Ly. Or
zhiz'lf,F < L, — zL,parles hypothéses 3)et 6),d’oth;z" 'Ly < z7* (L,—zL,)
< Ly par 5). De proche en proche on démontre ainsi (C). Sir # 2j — 1, cela
signifie que w,; # letdonch, ;- ;) # 1 puisqu’onalasuitezh, ,;_;,z"'.Ona
alors affaire a la situation

zWy;_1Lp © 227 Y (zhy 3j- 1y 27 ') Ly © Ly — zL,, ]

(5.2) Remarque. 1l résulte de la démonstration de (5.1) que les hypothéses
de (5.1) peuvent étre affaiblies de la maniére suivante : on choisit un ensemble Ry
(respectivement R,) de représentants de classes a gauche non-triviale de H
modulo F (respectivement: modulo ¢ (F)). On peut alors remplacer dans les

“hypothéses 2), 3) et 6) (H—F) par Ry et (H— o (F)) par R,

(5.3) COROLLAIRE. Soit G un groupe agissant sur un arbre I'. Soit
acArT" avec o(a) = u et e(a) = v. Supposons qu’il existe ze G tel que
o(za) = v. Alors z 'G,z = G, ce qui définit un homomorphisme injectif
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b:G, » G, (par & (x) = z~'xz) et lhomomorphisme ¥:: HNN (G,, G, P)
— G qui étend les inclusions est injectif.

Démonstration. Le fait que z 'G,z < G, provient simplement de
linclusion G, < G, = G,, = zG,z™ ..

Soit I" le premier subdivisé barycentrique de I' (voir démonstration de (4.3)
pour les notations). On va appliquer le critere (5.1) a la situation:

X - Som r, H —= Gu, F == Ga == G(u,a) - G(a,v)
Ly = Som # (u,a) L, = Som#(a,v) d=acSomT

Le lecteur pourra donc visualiser la situation en utilisant la figure 7 de la
démonstration de (4.3) en changeant L, en Ly et L, en L. Nous allons vérifier les
points 1) & 6) de I’énoncé de (5.1).

Le point 1) est banal. Le point 2) provient du fait que H—F = G,—G,etle
point 3)dece quez (H—¢ (F)) z~' = G, — G,. Le point 4) se déduit de ce que

e(z_l(a,v)) =u et o(z(w,a) =v.

Point 5). L’ensemble z (Lp—z~ !L;) constitue les sommets d’un sous-arbre
relié a v par arétet = z(u,a). Ort # (a,v)caro(t) = vete(a,v) = v. Donc
z(Lg—z"'Ly) = L, Méme raisonnement pour l'autre inclusion de 5).

Point 6). Soit he H—F. Le sous-arbre A dont I’ensemble de sommets est
hL,est relié a u par 'aréte h (u, a), tandis que le sous-arbre Bde I' dont 'ensemble
de sommets est z ' L est lui relié a u par I'aréte z~ 1 (a, v). Or, ces arétes h (u, a) et
z~ 1 (a, v) sont distinctes puisque

u=o(h@a)=e(z"!(av)

Donc A n B = (). Méme raisonnement pour la seconde partie du point 6).

Nous sommes maintenant en mesure de démontrer 'énoncé suivant, di a
Bass-Serre [Se, p. 50 et aussi § 5].

(5.4) CoOROLLAIRE. Soit G un groupe agissant sur un arbre T, de
maniére que le graphe quotient G\I' soit un lacet (graphe comportant
exactement un sommet et yne aréte). Soit aec ArI'. Alors G est isomorphe a
une HN N-extension de base G, et dont l'un des sous-groupes associés est G,

Démonstration. Posonsu = o(a)etv = e (a). Puisque Som G\I' = {u 3,
ilexiste z € G tel que zu = v. On en déduit, d’aprés le Corollaire (5.3) que z 7 1G,z
< G, et que 'homomorphisme W:HNN (G,, G, ) > G qui induit les
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inclusions est injectif (avec ¢ (x) = z~!xz). D’autre part, d’aprés (2.4), G est
engendré par
G,URy,,ouR,, ={reG|ilexistea, e ArT

avec o(a)ef{uv}ete(@)er{uv}}.

Soit r € R, ,,. Comme toutes les arétes de I sont dans la méme orbite, il existe
d, € G tel que a, = d,a. On a donc

dv = dzue {ru,rv}.
Sio(a) = u,ona
deG,etela)=r,=4dv,

d’ou

T T T Y N e L S

d"'reG, = zG,z"'.

r

Sio(a,) = v,ona

z7 ldeG,ete(z la) =z dv =z rv,

d’ou encore d_ 're G, = zG,z™ 1. Dans tous les cas on déduit donc que r est |
dans le sous-groupe engendré par G, et z, d’ou la surjectivité de V. B

6. STRUCTURES BIPOLAIRES

Rappelons qu’une structure bipolaire sur un groupe G est une partition de G
en cing sous-ensembles F, EE, E*E, E*E* et EE* satisfaisant aux axiomes 1)a 6) |
ci-dessous, avec les conventions suivantes : Si A et B sont deux sous-ensembles de
G, on définit ’ensemble

AB = {g = abeG|lacA et beB}

et '’ensemble
At ={geG|lgled}.

[ e e R e i i SO S S I

Si X € { E, E*}, alors (X*)* = X .
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Axiomes d’une structure bipolaire:

1) F est un sous-groupe de G
Pour tout X, Y, Z, X;e { E, E* } on a:

2) (XY)F < XY.

) (XY) ' < YX.

4) (XY)(Y*Z) = XZ.

) Pour tout g€ G, il existe un entier n(g) tel que si g = g9, ... gx avec
g;e X* X, pouri > 1, alors k < n(g).

6) E*E # Q.

Cette définition d’une structure bipolaire est la généralisation due a Lyndon-
Schupp [L-S, IV.6] du fameux concept de Stallings [St]. Remarquons que dans
cette version, on ne demande pas que F soit un sous-groupe fini.

(6.1) THEOREME. Soit G un groupe agissant sur unarbre I'. Soit pe G
un élément ne laissant aucun sommet fixe. Alors G admet une structure bipolaire
avec pe E*E u EE*.

Démonstration. Puisque p ne laisse aucun sommet fixe, il existe, par (3.3),
une chaine infinie C, stable par p et sur laquelle p opére par translation non-
triviale. On peut supposer qu’il existe a € Ar C,, telle que pa € 4 (a). Si ce n’est
pas le cas, on change p en p~!, ce qui na pas d’importance puisque
pe E*E U EE* si et seulement si p~! € E*E U EE* par I'axiome 3.

On définit alors F = G, et les autres ensembles sont déterminés par les
conditions suivantes:

he EE U EE* < haec Z (a)
he EE* U E*E < d (0 (a), o (ha)) = d (e (a), e (ha))

ce qui peut se visualiser de la maniere suivante:

r € EE ra /‘/t;‘/-
s € EE* TR o T

t € E*E sa_-~ T va
ue E*E* - \
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Il est clair que 'on a ainsi une partition de E. Les axiomes 1 et 2 sont banals.
L’axiome 3 se vérifie par inspection facile des huit cas possibles. Par exemple,
pour (EE) (E*E) < EE,soitg € E*E et h € EE. On utilise le principe que hga est
relié a ga comme ga est reli€ 4 a, ce qui donne la figure suivante d’ou 'on déduit
que hg € EE: (

La vérification de ces huit cas montre que si he XY et ge Y*Z, alors
d (hga, a) > d (ga, a),

ce qui permet de vérifier 'axiome 5 en posant n(g) = d (ga, a). Enfin, p € E*E,
d’ou 'axiome 6. [ |

(6.2) COROLLAIRE. Un groupe de génération finie qui agit sur un arbre T
sans sommet fixe (i.e. (Som IN® = @) admet une structure bipolaire.

Démonstration. Par [Se, Cor. 3, p. 90], il existe un élément g € G qui ne
laisse aucun sommet fixe. On applique alors (6.1). B

Nous allons maintenant donner notre démonstration du théoréme de
Stallings-Lyndon-Schupp:

- (6.3) TuforEME. Un groupe G admet une structure bipolaire si et
seulement si G est un produit amalgamé non-trivial ou une HN N-extension.

Démonstration. Si G est isomorphe a B, *, B, (respectivement: si G est
isomorphe a HNN (H, A, ¢)), alors il existe un arbre I" sur lequel G agit de telle
maniére que les groupes d’isotropies des sommets soient les conjugués des B;
(respectivement : les conjugués de H) et les groupes d’isotropie des arétes soient
les conjugués de A (voir [Se, pp. 49-50 ou § 5]). Tout élément qui n’appartient
pas 4 'un de ces conjugués agit donc sur I" sans sommet fixe, d’ou G, par (6.1),
peut étre muni d’une structure bipolaire (F, EE, ..) avec 4 = F.

La démonstration de la réciproque nécessite quelques préliminaires. Par
définition, un élément g € XY est dit irréductible si g # ab, avec ae€ XZ et
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be Z*Y. L'ensemble des éléments irréductibles de XY est noté I (X'Y). Nous
avons besoin des lemmes classiques sur les éléments irréductibles sous une forme
1égérement plus précise que celle de [L-S, p. 209], aussi nous les redonnons ci-
dessous complétement avec leur démonstration.

LemMe 0. 1(XY) ! < I(XY).

Démonstration. Soit geI(XY). On a g~' e YX par l'axiome 3. Si g~ !
— abavecae YZetbe Z*X,alorsg = b la ' € (XZ*) (ZY) par 'axiome 4,
ce qui contredit I'irréductibilité de g. |

LeMME 1. (XY)I(YZ) = F u XE u XE* en gén¢ral et

(XY)I(YZ) =« XEu XE* si X # Z.
Démonstration. Soitge XY et heI(YZ). Sighe X*U, alors
heg ! (X*U) c (YX)(X*U)
ce qui contredit 'irréductibilité de h. Si gh = f € F, alors
YZ hfl=gleYX

par les axiomes 2 et 3, dou X = Z. [ |

LEMME 2. I(XY)(YZ) =« F u EZ v E*Z en général et
[(XY)(YZ) < EZUE*Z si X#Z.

Démonstration. Identique a celle du lemme 1. [ ]

LEMME 3. I(XY)I(YZ) =« F U 1(XZ)en général et
I(XYI(YZ)cI(X2) si X #Z.

Démonstration. Aprésleslemmes 1 et 2, il suffit de montrer quesig € I (XY)
et he I (YZ), alors gh est irréductible si gh & F (ce qui implique que gh € XZ).
Supposons que gh = pg,avecpe XWetqe W*Z, doug = pgh™'. D’aprés le
lemme 1, gh~ ! appartient soit 8 W*U, ce qui contredit I'irréductibilité de g, ou
alors gh~! € F, mais ceci nécessite que W = Y*. Dans ce dernier cas, on aurait

g=plgh He(XY*F c XY*

par Paxiome 2, d’ou g € XY* n XY ce qui est impossible puisque XY* n XY
= Q. | n
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LeMME 4. [ (XY)F U FI(XY) < [ (XY).

Démonstration. Sigel(XY)et f e F,alorsgf e XY par'axiome 2. Sigf
= pqavecpe XWetge W*Y, on auraitg = p(qf ') e (XW) (W*Y) ce qui
contredit l'irréductibilité de g. D’ou I(XY)F <= I(XY), ce qui entraine
g~ 'f~!'el(YX)parlelemme 0 et 'axiome 1. Cela implique fg € I (XY) par le
lemme 0 et donc FI (XY) = I (XY). [ ]

Voici encore un lemme qui ne semble pas se trouver dans la littérature:

LEMME 5. I (XW)(W*Y)n I (XW*)(WY) = Q.
Démonstration. Supposons que gu = hv, avec
gel (XW),ue W*Y, hel (XW*) et ve WY.
Alors, les lemmes O et 3 ainsi que 'axiome 4 entrainent que

WY 3= (h ‘g)uel (W*X)I(XW)(W*Y)
< [ (W*W) (W*Y) ¢ W*Y

ce qui est impossible puisque WY n W*Y = Q. ]
Nous pouvons maintenant poursuivre la démonstration de (6.3). L’axiome 2
montre que la partition (F, EE, ..) de G induit une partition en cing sous-

ensembles { 1 }, EE, E*E, EE* et E*E* de ’ensemble G/F des classes a gauche de
G modulo F.

Soient B, = F U I(EE) et B, = F u I (E*E*). L’axiome 1 ainsi que les
lemmes 0, 3 et 4 impliquent que B; est un sous-groupe de G. On a donc un
homomorphisme ¥: B,*:B, — G qui étend les inclusions de B; dans G.

Affirmation : ¥ est injectif. Cela se démontre en appliquant le critére (4.1) a la
situation:
X = GJF, d=1,

Ly = EE UEE* L, = E*E U E*E*

La condition 1 de (4.1) est banale et la condition 2 se vérifie facilement:

(B;—F)E*X < (EE)E*X < EX < L, (axiome 4).

Idem pour (B,—F)) (L, v {d}) < L,.

L’axiome 5 entraine que G est engendré par les éléments irréductibles. Donc,
sil’onsuppose que I (E*E) = (D, celaimpliqueque I (EE*) = @ parlelemme0
et ¥ est surjectif. On a donc G = B;*:B, et Paxiome 6 empéche que F = B;
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(donc le produit amalgamé est non-trivial). En effet, si par exemple F = B, alors
G = F U EE ce qui est impossible puisque E*E # Q.

Il reste a examiner le cas ou I (E*E) # (.Soitdoncz € [ (E*E) et posons H
= B;. On a, par les lemmes 3 et 4:

z VI (E*E) < I (EE*) I (E*E) < H
I(EE*) z I (EE*)I(E*E) = H
z VI (E*E*)z < I (EE*) I (E*E)I (EE) = H

ce qui montre que G est engendré par z et H (puisque I'on a déja vu que G est
engendré par les éléments irréductibles). D’autre part, par les lemmes 3 et 4, on a

z7'Fz < I(EE¥)I(E*E) c H.

¥ Soit ¢: F —» H I’homomorphisme injectif défini par ¢ (x) = z~ !xz. On a donc
B un homomorphisme{: HNN (H, F, ) — G qui étend I'inclusion de H dans G et
. qui est surjectif. On va démontrer 'injectivité de { en appliquant le critére (5.1) a
;' | la situation:

X=GF d=1
Lp = EE UEE* L, = E*E U E*E*

Il faut vérifier les conditions 1 a 6 de (5.1):
Point 1). Banal.

Point 2). (H—F)E*X < (EE) E*X < EX (axiome 4).

Point3). ObservonsquezHz ™! < I (E*E) U F par les lemmes 3 et 4. Mais
sizhz™' e F avec he H, alors he z7'Fz = ¢ (F). Donc

z(H—¢ (F))z~ ' < E*E*,
et le point 3) se démontre comme le point 2).

Point 4). Se démontre comme le point 2).

Point 5). L’axiome S implique que
EX = I (EE) E*X U I (EE® EX .
Or I (EE*) z < H par le lemme 3, d’ou I (EE*) < Hz~!. On a donc

z(EX) = zI (EE) (E*X) U zHz ™! (EX).

Par le lemme 3, on a

zI (EE) (E*X) < I (E*E) I (EE) (E*X) < E*X c L.
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Soit x = hz™'v avec he H et v e EX. Par les lemmes 3 et 4, on a

zhz ' eI (E*E*) U F .

Sizhz™!' eI (E*E*),onaurazx € E*X < L, par 'axiome 4. Or, ce dernier cas se
produit toujours si x%& z 'Ly, puisque si zhz 'eF, on a hez 'Fz et
xez ‘F(EX) < z7'EX < z 'L, (le fait que F(EX) c EX provient des
axiomes 2 et 3). Idem pour la seconde partie du point 5.

Point 6 ).

(H—F)E*X nz 'EY < I(EE) E*X
A I(EE¥YEY = @

par le lemme 5. Idem pour la seconde partie du point 6), en utilisant le fait vu au
point 3) que z(H—¢ (F)) z~! = I (E*E¥).
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