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Theorem. LetM M(n1;nk)be a generalized flag manifold for
which the Conjecture C holds. Then

G (M) {[M]}.

In particular the Grassmann manifolds Gp(Cp+q) for p and the flag
manifolds U (n)/Tn are all generically rigid.

§1. Genus and self maps

Let P denote a fixed set of primes. Two P-sequences

SUS2:P^E(XO)

are called equivalent, if there exist maps h (0) g E (Jf0) and

h (p)e im (E(Xp)c E(X0))

such that for all p e P one has

h(0)SAp) s2(p)h(p).

Definition 1.1. We denote by P-Seq (E (X0)) the set of equivalence classes of
P-sequences in E (X0).

If P is a finite set of primes and X a nilpotent space of finite type, then there is

a canonical map

Q :G(X)-+ P-Seq (E (X0j).

It is defined as follows. Let Y e G (X) and P {pu pn}. Then the localization

YP is a pull-back of maps Xp. X0, i.e. YP ~ hoinvlim {Xp. X0}. The

maps Xt induce equivalences e E (X0) and we put

9(7)

If Yp may also be represented by hoinvlim {Xp.^> X0}, then there exist maps
h (0) g E (X0) and /T(pf) g E {Xpf i e {1,..., n} rendering the diagrams
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homotopy commutative and thus inducing hoinvlim {AJ ~ hoinvlim {pj.
Hence

{[Xi,fcj} {[filfA„]} e Seq (E {X0))

and therefore 9 is well defined.

Lemma 1.2. Let X be a nilpotent space of finite type and let P denote a finite
set of primes. Then

0: G(X) P-Seq (E (X0))

is surjective with fibers of the form

0"1 (9(y)) {Ze G (X)tZP^ YP).

Proof. Let P {pu pn} and

{17 u-,7J}e ^"Seq (E (X0j).

Let e, : XPi -> X0denotethe canonical maps and put

ft ji°ei\Xp. -*X0.
Define W hoinvlim {/J ; W comes equipped with a canonical map / : W

- X0. Let Z be the homotopy pull back of W X0 Xp, where P denotes the

set of primes complementary to P. Then Z g G (X) and

0(Z) /„]};
thus 0 is surjective. It is clear from the definition of 0 that for Y, Z e G (2f) one has

0(7) 0 (Z) if and only if YP ~ ZP.

The next lemma provides a sufficient condition for 0 to be monic "at the

basepoint".
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Lemma 1.3. Let X be a nilpotent space of finite type. Suppose that there

exists a finite set of primes P with complement P such that

a) Y e G (X) implies YP ~ Xp

b) every / e E (X0) can be written as f1 ° f 2 with f1 e im (E (XP) E (X0))
and f2e im (E (XP)^E(X0)).

Then for 0: G (X) - P-Seq (E (X0)) as above, one has 0~ 1
(0 (X)) {X}.

Proof. Let Y eG (X) with 0 (Y) 0 {X). Then YP ~ by the definition
of0, and Yp ~ XP by assumption. Hence Y may be obtained as a homotopy pull
back of the form

If a induces a e E (X0) and if y a
1

° ß, then Y is also a pull back of the form

y x0

Let y e E (2T0) be the map induced by y and write y f1f2 with

fy 6 im (E (XP) - E(Z0)),f2 e im (E (X-P) -> E (Z0)) •

Choose a lift /x"1 e E(XP)of /r1 and a lift /2 e (XP) of Then /r1 y
can o f2andone can form a commutative diagram,
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§2. The case of generalized flag manifolds

The following result is an easy consequence of [F].

Lemma 2.1. Let M be a generalized flag manifold. Then the following
holds.

a) If g (X) g Gr (M0) is a grading map with X g for some (not necessarily

finite) set of primes Q, then g (X) lifts to a homotopy equivalence g (X) : MQ

-Me.
b) Let P be an arbitrary set of primes with complement P. Then every

fe(Gr(M0),N(H)/H>

may be written in the form / f1°f2 with

/i 6 im [E(MP)->(M0))

and

/2Gim(£(Mp)->£(M0)).

Proof. Let X k/l with k and / relatively prime integers. Then g (k) and g (I)

lift to equivalences

g(k),g(l):MQ- Mc
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