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SUR LA FONCTION:
NOMBRE DE FACTEURS PREMIERS DE N

par Paul ErRDOs et Jean-Louis NICOLAS

 ABSTRACT. Let w (1) be the number of prime factors of n; n is said w-largely
composite if m <n = o (M) < w (n). .
The quantity Q, (X) of such numbers <X verifies e’ WeeX 0, (X)

- L e X Then we prove

clog x
card n<<x [ w(n) > _g_ — xl—c+o(l)
loglog x

~and if Q (n) is the total number of prime factors of n counted according to

) e logn
-~ multiplicity, Q (n) + Q (n+1) < oo 5 (1+0 (1))
0g

An integer n is defined w-interesting 1f

w (m) - a)(n).
m n

m>n=

A short study of these numbers is given. We prove that there exists infinitely
- many strangulation points (n,) for the function n —  (n)
~ i.e. such that: m<mn,=m—o(m) <n,—own)

and m > n, = m—aw(m) > n,—wn)

Finally, we deduce from some formula of A. Selberg the exact order of
card {n < x| w (n) > « log log x} for « > 1.

INTRODUCTION

Soit n = pil... pi* la décomposition en facteurs premiers de n. On
- définitw (n) = ket Q(n) = oy + oy + ... + 0. Les fonctions w et Q sont
- additives: une fonction f est additive si (m, n) = 1 entraine f (mn) = f (m)
~ + f(n). Hardy et Ramanujan (cf. [Har]) ont démontré en 1917 que la
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valeur moyenne de w (n) était log log n. En 1934, P. Turan donnait unei
démonstration simple de ce résultat, en prouvant: (cf. [Tur])

X

Y, (o) —loglogx)*> = O(xloglogx).

n=1

En 1939, M. Kac et P. Erdos démontraient (cf. [Kac]):

1
lim - card {n <x;0{) <loglogx + t,/loglog x}

coe X
t
o= I__I e 2 gy,
\/27Z — 00

Ensuite, P. Erdos ([Erd 1]) et L. G. Sathe ([Sat]) s’intéressaient aux
entiers n < x tels que w (n) soit de I'ordre de cloglog x. A. Selberg
([Sel 1]) donnait la « formule de Selberg »

(1 Y z°® = zF(2)x(log x)" ! + o(x (log x)Re =72)

n=x

ou pour R > 0, le O est uniforme pour | z | <R; F (z) est la fonction entiére -

1 z 1\*
FO - g 1 (1+p_1) (1_5) .

Cette formule permet d’obtenir plus simplement les résultats de Sathe.
Dans la proposition 3, nous suivrons les idées de A. Selberg pour calculer
un équivalent de:

card {n <x|w(n) > aloglogx}, w>1.

La formule (1) a été¢ étendue par H. Delange (cf. [Del 1] et [Del 2]).

Soit p, le kK™ nombre premier et posons A, = 2 -3 - ... p;. Ce nombre
A, est le plus petit entier naturel n tel que w (n) = k. On dit que n est
w-hautement composé si m < n = o (m) < o (n). La suite des nombres
w-hautement composés est la suite 4,.

A Taide du théoréme des nombres premiers, ona:log A, ~ p, ~ k log k;
on en déduit que pour tout z (cf. [Wri], ch. XVIII):

log
1+o(1
i) lo glogn( o ( ))
et que Q, (X) le nombre de nombres w-hautement composés <X vérifie:

log X

X) ~ —
2 (X) log log X
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NOMBRE DE FACTEURS PREMIERS 5

On dit maintenant que n > 2 est w-largement composé, si 1 <m <n
= o (m) <o@). Si 4, <n < Ay, n est w-largement composé si et

1 seulement si w (n) = k. Soit Q; (X) le nombre de nombres o-largement

composés << X. Nous démontrerons le théoréme suivant:

THEOREME 1. Il existe deux constantes 0 < ¢y < ¢, telles que:

exp (c; /1og X) < Q;(X) < exp (¢, / log X) .

Nous démontrerons ensuite:

THEOREME 2. Soit ¢, 0 <c< 1. Ona:

clog x } — le=ekefl)

f.(x) = card { n<x; ol >
loglog x

Entre les résultats obtenus par la formule de Selberg et le théoréme 2,
il y a un trou & boucher, pour estimer par exemple: card {n <x [ w (n)
> (log x)*}, 0 <a< 1. Kolesnik et Straus (cf. [Kol]) ont donné une formule
asymptotique assez compliquée qui fournit partiellement une solution a ce
probléme.

Nous nous intéresserons ensuite aux valeurs extrémes de f (n) + f(n+1),
pour quelques fonctions arithmétiques f. Nous démontrerons en particulier:

THEOREME 3. On a, pour n — + o0:

log
Q) + Q(n+1) <@g(1+o(1)).

Au paragraphe IV, nous disons qu’un nombre n est w-intéressant si:

m>n=>ﬁ)—(—ni) < a)(n)
m n

Cette définition caractérise une famille de nombres n qui ont beaucoup
de facteurs premiers, en les comparant avec des nombres m plus grands
que n (contrairement a la définition des nombres hautement composés).
Nous donnons quelques propriétés de ces nombres.

Enfin, dans le dernier paragraphe, on dit qu’une fonction f a un point
d’étranglement en n, si

m<n=f(m)<f(n) et m>n=f(m)>f(n).
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Interprétation géométrique: Le graphe de f, contenu dans I'angle droit de |
sommet (n, f (n)) et de coté paralléle aux axes, s’étrangle en n. Nous
démontrerons:

THEOREME 4. La fonction n — n — w (n) a une infinité de points d’étrangle-
ment. |

Pour démontrer ce théoréme, nous construirons une infinité de points n
tels qu’il existe juste avant n, une plage de nombres ayant beaucoup de
facteurs premiers et juste aprés une plage de nombres ayant peu de facteurs
premiers.

§ 1. DEMONSTRATION DU THEOREME 1

Minoration : D’aprés le théoréme de Selberg, (cf. [Sel 2] et [Nic]) il
existe entre (1 —2¢) log X et (1 —¢) log X un nombre x tel que:

J(x)

log x

S (%)

n(x+ f(x)) —n(x) ~ log x

et n(x) —n(x—f(x) ~

pour toute fonction f(x) croissante, vérifiant f(x) > x'/°

X
jl) décroisse et tende vers O.
X

et telle que

On choisit f(x) = ¢ \/—x—log x. Soit k tel que p, < x < pi4 1. On consi-
dére la famille de nombres:

n=Ak_.,.q1...q,,, 0<7'<S

ougqy, ..., g, sont des nombres premiers distincts choisis parmipy . 1, ..., Pyt s
De tels nombres vérifient w (n) = k et il y en a 2°. De plus ils vérifient:

n < Ak (pk +s> .
Pr- s
On choisit s de fagon que p,., < x + f(x) et pp_s =>x — f (x) de telle

Jx)

log x

. On a alors:

sorte que s ~

n x + f(x)
log— < slog——— < 2¢%1 :
gAk\S gx——f(x) = c“log x
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1
Si ’on choisit ¢ < —— , on aura donc 4, <n < A, et ces nombres

V2
n seront w-largement composés et < X. On aura donc :

s (1—¢)log 2
Q,(X) > 2°> exp < 77 \/logX>-

Majoration : La majoration de @, (X) est basée sur le lemme:

. LemME 1. Soit p; = 2,p, = 3,.,p le k™ nombre premier et soit
- T(x) le nombre de solutions de I’inéquation :

XiPy + Xps + oo + X0, + ... <x, x;€{0,1}.

Si C>mn \/%, on a pour x assez grand:

X

log T(x)<C\/ .
log x

Démonstration. Le nombre de solutions de ’équation:
X1Py + XoPy + oo +X,p, + ... =n, x,€{0,1}

est le nombre S (n) de partitions de n en sommants premiers et distincts. Le
nombre T'(x) = ) S(n) peut étre évalué par le théoréme taubérien de

==X

Hardy et Ramanujan (cf. [Ram]) et Roth et Szekeres donnent la formule

[Roth]:
Py o log lo
logS(n)=n\/%\/ n <1+0<-§—ﬂ>>
3 Vlogn log n

. et montrent que S (n) est une fonction croissante de #n. On a alors:
T (x) <xS[x]
| Nous nous proposons de majorer le nombre d’éléments de ’ensemble:

E, ={n|o®) =k, n <A},

Soit neE,n = qi'... ¢i¥; le nombre n' = ¢q, q, ... q, est sans facteur

, n
carré et n’ € E,. De plus — < p,, ;. On a donc:
n

card E, < py4q card E',,
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avec: E'y = {n | n sans facteur carré, w (n) = k,n < 4,41}
Maintenant si n € E',, n s’écrit:

— 21-yk 31-yp—1 1-y1 %1 %
no=2""%3"%-1__ p, Pri1 o Diiir oo

avec x; et y; valant Oou 1l et ) x; = > y;. Il vient:

n r
log— = x; log Pt 1 + ... + x,log Sl + ...+ )1 IOgP—k
Ay Dx Px P
+ ... +y,log + ...
pk-—r+1

Le nombre d’éléments de E', est donc majoré par le nombre de solutions
de I'inéquation, en x; et y; valant 0 ou 1:

x, log Pet |4 x, log Peer o &+ V4 log& + ...
Dx Pr Dx
Dk
+ y, log + ... < log pryy -
Pr—r+1

On en déduit: card E), < N; N,, avec N; = nombre de solutions de
I’'inéquation &; (i=1, 2):

Pr+r
(&) x,log P + ... + x,log AL <log pi+y
D D
p p
(&) yilog™ + ... +ylog—"— + ... <log pesy -
Dy Pr—r+1

Soit R le plus grand nombre r tel que p; ., < 2p;. On coupe 'inéquation
&, en deux:

R
% Pi+r
St Z x,log < log pr+1 s
r=1 Pk

0

” pk r
SE Z x, log L log pi+1 -
r=R+1 Dr

Le nombre de variables de &, est en fait fini, et majoré par py pr+ 1. Le

nombre de variables non nulles d’une solution de &; est majoré par
1

— log p.+ 1. Le nombre N; de solutions de &; est majoré par:
0og
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1
” DPx Pk+1 1 fog 3 °F Pk+1
N < Z . < 1 log pr+1 (Pi Pr+1)
H J og 2
= log pp4 1

ce qui assure:
% Ni = exp ((Olog pp?) .
Tl résulte de I'inégalité de Brun-Titchmarsh (cf. [Hal 1] et [Mon]):
, n(x) —n(x—y) <2y/logy
~valable pour 1 < y <x que, pour k > 2:
k r r
Dr+r — Pr > ‘ilog (Pk+r— D) > *2‘108 2r .
On en déduit que pour ¥ < R, on a:
log Drtr o Pear — Do Tlog2r

og—- > = > -
P Pr+r 4py Pr

Toute solution de &', est donc solution de I'inéquation:

1
XiPy + X202 + oo FXP < ;Pk log py+1

et d’aprés le lemme précédent, on a:

log N’1 = 0(\/Pk)

et le nombre de solutions de &, vérifie:

log N, = 0(/py) -

On démontre de méme que le nombre N, de solutions de &, vérifie:

—
| log N, = O(ypo) -
- Ce qui entraine:

| log(card E')) <log N, +log N, = O(\/};k)
. et:

card E;, < p4q (card E') = exp (O (\/Ec)) :

Finalement, l’ensemble des nombres w-largement composés est

0

x U E,; la quantit¢é Q,(X) de tels nombres < X vérifie, en posant

Ay, < X < A4y, 41, ce qui entraine log X ~ p, :

g
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ko - — —
& X < ¥ exp (0(/p0) < koexp (0(/p) < exp (c2/log X).

Remarque. On peut conjecturer que log Q; (X) ~ =« \/ _i. \/ log X. En

effet s1 'on calcule la constante ¢, dans la majoration ci-dessus, on trouve

2
c, =2m \/ 3 (1+¢), le «2» venant de la formule de Brun-Titchmarsh.

Si I'on suppose les nombres premiers trés bien répartis autour de p,, on

Pr+r, 108 Driq
ayr———

Dk Pk
le nombre de solutions de I’inéquation

peut assimiler log et le nombre d’éléments de E’, serait

o0 o 6] (e 0] e 0]
Y rx,+ Yy  ry,<p. avec )y @ x; = o
r=1 i=1 i=1

r=1

x;, ¥;€{0, 1}. Le logarithme de ce nombre de solutions est équivalent a
[
NEN

§ 2. DEMONSTRATION DU THEOREME 2

clog x
Minoration : Posons k = | ——2° | + 1 et A, =P =2.3. p.
loglog x
oll 6 (x) = ) logp est la fonction de Chebichev. Les multiples n de 4,
p=x
. clog x X . e :
vérifient w(n) > —————. Il y en a | — | qui sont inférieurs & x. On a (cf.
loglog x A,

[Land], § 57):
log 4, = 0(p) = pi + O(pflog®p) = k(log k+loglogk—1+4o0 (1)) -

Il vient en posant / = log x, /, = log log x, I; = log log log x:

)
k=210
I,
log 4, = cl + c(logc—1) (140 (1) I/I,
et
X

t-e 11 L4 o(1)) 08%
> | 1] em (caona trom) f2E ).
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Majoration : En développant par la formule multinomiale (cf. [Com],
t. 1, p. 38 ou [Hal 2], p. 147), on obtient:

(Z -1—> > k! Y 1

p=xP 2£piy) < < P =% Py Py oee Py

RS i e T N I

k

- On a donc, pour k € N, en désignant par S ’ensemble des nombres sans
' facteur carrés,

1 1 1 1\ *
DT T
X n=x, neS n<=x, neS n k! p=x p

o(n) =k o (n) =k

] Evaluons maintenant le nombre d’entiers n < x dont les facteurs
- premiers sont exactement p;, pi,, ..., pi, . On doit avoir

I P a .
n = p;lp;? ...piz<x, a; > 1.

- Ce qui entraine

log x
oy + oy + .o oo < : o; > 1.
| log 2

Or le nombre de solutions de cette inéquation est un nombre de combi-
[log x / log 2] 1 /log x\*
< - .
k k!\log?2

naisons avec répétition et vaut <

On a donc

i 1 1\* /log x\*
X n=x (k) p=x D 10g2

et

( Y %)J (log x/log 2)

p=x

o (n) >k
| s a’ a*
On utilise la majoration ) —— < valable pour

; = G (kY 1—af(k+1)?
a < (k+1)*. On sait d’autre part (cf. [Land] § 28) qu’il existe B tel que

1
Y, — <loglog x + B, et on choisit:

p=Xx
clog x
e e Ly B
loglog x

P
M
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On obtient alors

x (I, + B (I/log 2)* 5
£ < o (1 +0 (7»

et en remplagant log k! par k log k£ + O (k), on obtient

log x log log 1
fe(x) < x77¢exp (30(1—1—0(1)) ER o888 x)

loglog x

ce qui acheve la démonstration du théoréme 2.

§ 3. VALEURS EXTREMES DE f(n) + f(n+1)

1) Fonction o (n) = somme des diviseurs de n.

On remarque d’abord que, lorsque n - + o0,

1 1
2) o) =n I <1+_+...+_a>
p||n p p
1 1
—n(l4o®) T[] (1+._+...+_;)
pa]}]n p b
p=logn

autrement dit, les facteurs premiers supérieurs a log » ne modifient guére
d (n). De tels facteurs, il y en a au plus log n / log log » et:

_ logn
1 1 1 1 loglog n
I <1+—+...+——)< I <<1—- )
pal|n P p° = pafjn 1—1/p = log n
p>logn p>logn
{ O (1)
B loglogn

ce qui démontre (2).

Ensuite, on a pour tout n, o (n) > n et pour » pair, ¢ (n) > —n. On a

5
donc pour tout n: o(n) + o (n+1) > 5 n. Inversement, pour k fixé, le

nombre n = 4p, p3...p, T 1 est tel que n et » + 1 n’ont pas (& part 2)
de facteurs premiers inférieurs a (1 —¢) log n et donc vérifie: o (n) + o (n+1)

= ; n(1+o (1))
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On obtient les grandes valeurs de o (n) + o (n+1) de la fagon suivante:
Il résulte de (2) que

c(n) +o(n+1) <n(l+0(1) (Py+Py)
:avec
1 1
P — Ct Pz == H .
1 rxl I-14r pint1 1=1/p
p=logn p=logn

Comme P, et P, sont supérieurs a 1, Py + P, <P P, + let

1

~ ¢’ loglogn,
p=logn 1 _l/p

ol y est la constante d’Euler d’aprés la formule de Mertens (cf. [Wri]
- §22.8). Cela donne pour tout »

om) +o(n+1) <n(l+o(l)e’loglogn.

Ce résultat est le meilleur possible puisque pour une infinité de n, on a
(cf. [Wri] § 22.9):

oc(n) ~neloglogn.

| Pour que la majoration P, + P, << P; P, + 1 soit bonne, il faut choisir
Py ou P, voisin de 1. L’examen des tables de max o (n) et de

n=x

max (o (n)+o (n—1))

n=x

- montre que souvent un nombre N hautement abondant (c’est-a-dire véri-
flant n < N =0 () <a(N)) vérifie: max (¢ (m)+o®—1))= o (N)

; n<=N+1
"+ o (N—1)ouo (N+1)+a (N).
2) Indicateur d’Euler ¢ .

On a une relation analogue a (2):

d(n) =n [] (1—1—1)>=n(1+0(1)) I (1—-1-).

pin p|n P
p=1logn

On démontre comme précédemment que pour toutn > 1, on a

¢<n>+¢(n+1)<§n
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et que, pour une infinité de »

d(m)+od(m+1) ~—§-n.

Pour les petites valeurs de ¢p (n) + ¢ (n+1), on a

(M) +¢m+1)>n(1+01)(Py+Py) > 2n(1+0(1) /PP,

avee

p|n p p|n+1 p
p=logn p=logn
et comme
e—)’
PP, = 1-1/p) ~ ———,
2= p_lllogn loglogn
on a

2¢7"?n (1 +0 (1))
Jloglog n .

¢(n) +¢(n+1)>

Cette inégalité est une égalité pour les n construits de la fagon suivante:
Soit k € N*. On pose P, = [] (1—1/p). Soit k' le plus grand entier tel

p=1p,
que P, > \,/E; on pose alors R = pyp, ...pps S = Prryq1 .- Py ON A
$(R) _ ¢(5)
R S
congruences: n = Omod R; n+ 1 = Omod S. Cette solution vérifie
R <n< RS=exp(0( py), ce qui montre que n tend vers I'infini avec k,

(1+o (1)) et on prend pour » la plus petite solution des

o 2 <</>(R)et</>(i'l+1) Aty

n R n+1\S

3) Fonction Q: Démonstration du théoréme 3.

ProrosITION 1. Soit ¢ >0 et k>0. Onécrit n(nt+1) = UV, ou
U, est le produit des facteurs premiers < k. Alors il existe n, (k, €) tel que
pour n >n,, onait U, <n'*te
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Le théoréme 3 résulte de cette proposition puisque pour k > 2:
Q)+ Q(n+1) = Qnm+1) = QUY + 2V
log U, N log V,

log 2 log k
logn 2logn

< (1+¢) , pour mn>ng.

log 2 * log k

Etant donné 7, il suffit donc de choisir ¢ assez petit et k assez grand pour

: logn
obtenir: Q(n) + Q(n+1) < 1—g~—?: (1+#n) pour n > n,.
; og

La proposition 1 résulte de la proposition 2 (cf. [Rid] et [Sch], th 4F),
‘comme nous I’a précisé M. Langevin:

ProprosiTION 2 (Ridout). Soit 0 un nombre algébrigue # 0. Soit
P, P, ...,P, Q4 Q,,.., O, des nombres premiers distincts, et 6 > 0. Il
'y a un nombre fini de nombres rationnels alb avec:

a =a' P%P%2. P e b=>bQlQl. . Qk
avec: Oy, 0y ... g By, Bay s B €N et a', b e N* tels que

1
= |a’b’[ Iabla'

a
b

’9_

Démonstration de la proposition 1. Supposons que pour une infinité de n,
onait U, > n'"% On peut partager les nombres premiers <k en deux

‘parties P,, P,,...P et O, O,, ... O,, de telle sorte qu’il y ait une infinité
de n tels que U, > n 7% et tels que

p<k et pln=pe{P;,..,P},

p<<k et p|n+1=>pe{Q1,...,Qt}.
Onécritn = n' PA...P% et (n+1) = n" Q%' ... QF et 'on choisit 6 = 1,
5= ¢/3. Il y aurait alors une infinité de nombres rationnels .

;de

, solution

n

n+1
ll on
n

1
| n'n” I (n(n+1)y

I _ 1— _ : . .
Lpuisque n'n" =V, <n ~°+ n”% ce qui contredirait la proposition 2.
e

<
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Les valeurs de n < 300 000 vérifiant
m<n=Q(m@m+1)) < Q(n{ntl)

sont (avec, entre parenthéses la valeur de Q (n (n+1))): 2(2); 3(3); 7 (4);
8(5); 15(6); 32(7); 63(9); 224 (10); 255(11); 512(13); 3968 (14);
4095 (17); 14436 (18); 32768 (19); 65535 (20); 180224 (22); 262143 (24).

On constate que les nombres 2" + {—1, 0, + 1}, lorsque » a de nombreux
facteurs premiers, figurent en bonne place dans cette table, Malheureuse-
ment, la proposition 2 n’est pas effective, et il n’est pas possible de montrer
par cette méthode que la table en contient une infinité.

4) Fonction .

Nous avons rappelé dans 'introduction que pour tout », on a

logn

w(n) <
loglogn

(140(1)) .

— o®m +orn+1
Soit / = lim ) ( )

logn /loglogn °
On a1 <! <2 de fagon évidente. On a probablement / = 1, mais il semble
impossible de le démontrer.

La suite des nombres n tels que m < n = o (m (m+ ) <o (n(n+ 1))
est: 1, 2, 5, 14, 65, 209, 714, 7314, 28570, 254540, etc ... On a en particulier
714 = 2-3-7-17et 715 = 5-11 - 13. L’équation

nn+1) =2-3-5...p

a-t-elle des solutions > 7147 (cf. [Nel]).

Pour les petites valeurs de w (n) + w (n+1), le résultat de Chen (pour
une infinité de nombres premiers p, on a Q (2p+ 1) < 2, cf. [Hal 1], chap 11)
montre que pour une infinité de n, on a

om) +om+1) <M +Q2n+1) 4.

L’ultime amélioration du résultat de Chen (Q 2p+1) = 1) permettrait
de remplacer 4 par 3 qui est le meilleur résultat possible pour Q.

Sil'onaw(@) + w@®m+1) = 2,netn+ 1 doivent étre des puissances
de nombres premiers. L’un des deux étant pair, doit donc étre une puissance
de 2. Cette situation se produira en particulier si # est un nombre premier
de Mersenne (n = 22 — 1 avec p premier) ou si » + 1 est un nombre
premier de Fermat (n+1=22k+1). D’autre part 1’équation 2" + 1 = p°
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avec a >2 qui est un cas particulier de I’équation de Catalan, n’admet

qu’un nombre fini de solutions (cf. [Tij]).
L’existence d’une infinité d’entiers n tels que w (n) + 0 (n+1) = 2 est

~donc équivalente a Pexistence d’une infinité de nombres premiers de

Mersenne ou de Fermat.

§4. NOMBRES -INTERESSANTS

Définition. On dit que 7 est w-intéressant, si ’on a

w (m) w (n)
m>n-= — < .
m n

Interprétation géométrique: pour m > n, le point (m, w (m)) est situé sous
la droite joignant I'origine a (n, w (n)).

Propriété 1: Pour k > 1, lenombre A, = 2-3 - ... p, est w-intéressant.
En effet: si w (m) <k on a bien: w (m)/m < w (4,)/A, pour m > A,. Et
siw(m) =k + 4,4 > 0, on a alors m > A4, 3% et:

1+ —
w (m) k+4 w (4,) ( k) o(A4,) 1+4 w (A;)
< 5 = 3 < y <
m A3 Ay 3 A, 3 A,

Propriété 2. Soit n vérifiant :

1
alors n est w-intéressant.

Démonstration : Soit m > n, ou bien on a: m > A4, et d’aprés la pro-
priété 1:

1
k+D(1—-—
o(m) _ o) <( - )< k>< o ()

==
m Ay n n

ou bien on a: n < m < A, et cela entraine w (m)/m < kin = w (n)/n.

Propriété 3 : Pour une infinité de valeurs de k, il existe un nombre w-inté-
ressant, plus grand que A, et ayant k — 1 facteurs premiers.

L’Enseignement mathém., t. XXVII, fasc. 1-2. &
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Démonstration : Soit k tel que

Pr+1 1
3 S14

alorsn = 2-3 ... p._1(p.+1) est w-intéressant:

DPr+1

Remarquons d’abord que l'on a 4, <n<n' = 4, et que pour

Px
k > 2, d’aprés la propriété 2, n’ est w-intéressant. Ensuite, w (n) = k — 1;
simvériien<m<n ona: w(m) <k — 1, si m vérifie ' <m, on a

w (m) - w(n) _ i - k-1

’ ’ ?

m n n n
d’aprés ’hypothese.

On sait qu’il existe une infinit¢ de nombres premiers tels que
Pr+1 — Pr > 2 log p, (cf. [Pra], p. 157). Pour ces nombres on aura

2 1o -1
DPr+1 1+ g Pk
pr+1 prt+1

et comme p, ~ k log k, cela entraine la relation (3).

Remarque 1. Si k vérifie p,,; — pp < P

il est facile de voir qu’il

Dr+1

4%
Cette situation se produit pour une infinité de k. On peut donc conjecturer
que pour une infinit¢ de k, les nombres w-intéressants compris entre A,
et A, vérifient w (n) > k.

n’existe aucun nombre w-intéressant compris entre A, et n' = A4,

Remarque 2. Désignons par n” le plus petit entier suivant A4, et ayant

1
(k—1) facteurs premiers. Onan” <n= Ak<1 + —> . Il est possible d’obte-

Dk
nir une meilleure majoration de n” de la fagon suivante: Le théoréme de

Sylvester-Schur affirme que P (u,r), le plus grand facteur premier du

produit (u+1) ... (u+r) est plus grand que r si u > r. (cf. [Lan]).
P2
Considérons le produit: ] (Pe—1 prt1t). 11 doit avoir un facteur
t=1

premier g > p,_,, et soit t = ¢, tel que g divise p,_,; p, + . Alors le
nombre n = 2-3-...p_, (Pr—1 P T1t) a k — 1 facteurs premiers et I'on
an<<A,(1+p,_,/p.pr—1)- Le résultat de Ramachandra (cf. [Ramac]):
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. 1 A
si P32 <u<r" ona:P(ur)>r't?* avec A

I
l
N
fo%e)
-
ol
oq |09
- | &
N——

| 1
permet de montrer qu’il existe a > 0 tel que n" < 4, <1 + o +a> . On
k

@ peut prendre o = 0, 000974,

Propriété 4. Soit n un nombre w-intéressant, n >(k—1) A, alors
w (n) >k. Cela entraine qu’un nombre c-intéressant compris entre Ay
et Ay, aplusde (k—1) facteurs premiers.

Démonstration. Soit n > (k—1) 4, vérifiant o (n) <k — 1; on écrit
A, (t—1) <n < A, t, fentier.

On a donc ¢ > k. Ce nombre n ne peut pas €tre w-intéressant puisque

o (1) k—1 k o (A,
< — < —— < :
n Ak (t - 1) Akt Akt

e
2

st gl Y s f e ey W e S S s
g L A TS

EN S

e o
L

e

Conjecture: Peut-on remplacer n > (k—1) A, par n > (1+¢ (k)) 4, avec
lim &(k) =

k= + o

Finalement, on voit que I’ensemble des nombres w-intéressants coincide
presque avec l’ensemble des nombres w-largement composés: Les deux
ensembles ont une infinité de points communs, mais il existe une infinité
de nombres w-largement composés non w-intéressants (exemple:
n = (pr+1—1) Ay par la propriété 2) et la propriété 3 fournit un exemple
de la situation inverse.

§ 5. DEMONSTRATION DU THEOREME 4
§ PRrROPOSITION 3. Posons N, (x) = card {n <x [ w () > k}. Pour «
fixé, a > 1, onalorsque x — + oo (avec les notations de [’introduction)
1 F (o) L&+ (aloglogx) x(1+0(1/loglog x))
NE (log x)l‘”“l"g“\/loglogx

ot {y} désigne la partie fractionnaire de 3.

N[a log log x] (X) =

F (2)

Pour 0 < o < 1, la formule ci-dessus est valable (en remplagant
F (o)

—

| par ) pour estimer card {n <x | (n) <o loglog x}.
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Démonstration (communiquée par H. Delange). Soit P, (z) = Y, z°™.
n=x

Le théoréme des résidus montre que:

1 P.(z)
N () = 2in L (z—1) ! dz

ou y est un cercle de centre 0 et de rayon r > 1. On applique la formule de
Selberg (1)

1 zF (z)x(log x)* !

N - d R 3
€ () 2in J, (z=1) ! Z+ R
avec

1 0 1 Rez—2 1 r—2

Ry = o [ QB0EITR o (Xloexl

2in ), (z—1)z (r—1)r
zF (2) .
On pose = G (2). G est holomorphe en z = r et I'on écrit

Z —

G(z) = G() +(z=1) G () +(z=1)H(z,7),
1
avec H (r,r) = 3 G" (r). Par la formule de Taylor, il existe 1,0 <1< 1

1
tel que H (z,7)= 5 G" (Az+ (1 —2)r).La fonction H est donc continue et

H (z, r) est bornée uniformément pour zeyp, 1 < r; <r <r2. On pose
log log x = . On obtient

N (x) =

zl
1 J‘ x G(2)e dz + R, ()
y

2im log x Aol

2\ pzl P N P VI
=__1__<fka(#dz+ Jx(z ’LiG mdz) + R{(x) + R, (x)
Y b4

z

2it log x 5 z
TSI, G’()( i ! + Ry () + R, (x)
= r —_ X .
gz % T iog k—D! k! L 21

k
On choisit r = T de telle sorte que le coefficient de G’ (r) s’annule, et

ona

R, (x) = dz

z

1 J x(z=r)*H(z,7)e”
y

2in log x e

Si l'on pose z = re”, ona |z —=r|*|e"] = 2r*(1—cos ) " "
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On peut montrer que, lorsque o — + o0, on a [ (1—cos 0) e*°*°df
= 0 ("0~ 3/?) (cf. par exemple, [Dieu], ch. IV). On en déduit que

. X erl
R, (x) = O log x P12 k=12
et finalement

. lk % erl X (log x)r—Z
N, (x) = I G(r)ﬁ + O ( [312 Jk=1/2 ) + 0 < (r—1) ¥

og X log x

1
=q+ O —— |, on a donc G (r)
loglog x

1 , :
= G (o) ( 1+ 0O (l_>> , on évalue chacun des termes ci-dessus (en particu-

k
On pose k = [xlog log x],r = 7

| lier k! par la formule de Stirling: k! ~ k* e™* \/ 2rnk) et on obtient la
2 proposition 3.
Lorsque 0 < o < 1, on suit la méme méthode, en intégrant sur un cercle

de rayon r = 7 < 1.

S et e s Tt S

PROPOSITION 4. Soit (ny, A) = 1, et a > 0. Alorsona,avec d(n) = Y 1,
d|n

I 2x 1 _

¥ 0O > d(n) < —<1+—logx>+2\/x,

g n=ng mod A A 2

1 2x 1 _
o 1 < X1t Z1osx ) + 2. %

3 ) nsnozmodA " (logx)=e? ( A ( T30 ) X )
n=x

q o (1) = a loglog x

: } 1

¥ En particulier cette derniére somme est O | — o= | lorsque
% A (log x)* '8

4 = O(\/;)_-

Démonstration. La formule (ii) est une conséquence immédiate de (i): Les
nombres pour lesquels  (n) > o log log x vérifient d (n) > 2°™ soit
d(n) > (log x)*'& 2,

Ona
Y dm< Y Y 2< Y 2 Y 1.
nsnni)én;odA nEnnEén.IdeA dé\/: dé\/? n:—:g(l)nmodA

d|n n=x
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Or les nombres n sur lesquels s’effectue cette derniére sommation vérifient
n=ny,+yA =0modd. Si(4,d)= 1, cette congruence a une solution
et une seule en y dans chaque intervalle de longueur d. Si (4, d) # 1, pour
que cette congruence ait une solution, on doit avoir (4, d) | ny, d’ou
(4,n,) # 1; il n’y a donc pas de solutions. Finalement, il y a au plus une
solution dans chaque intervalle de longueur d et la somme est

2x 1

< Y 2 _+1 <2 Jx+— [ 1+ =logx|.

_ \Ad A 2
déx/

Remarque. Dans le cas A = 1, « = 2, on trouve dans I’estimation (ii) le

méme exposant pour log x que dans la proposition 3. Ceci est a rapprocher

du fait que (cf. [And])

Y d(n) ~xlogx .

n=x; o(n) ~ 2loglog x

Par des méthodes plus compliquées, il est possible d’obtenir pour (ii)
une meilleure majoration.

LEMME 2. Soit M = (a;;) une matrice & m lignes et n colonnes a coeffi-
cients dans un corps K. Soit P wune partie de K et soit L; le nombre
d’éléments de la i*™ ligne de M qui sont dans P. Alors il y a au moins

Y. L; colonnes de M dont tous les éléments sont dans K — 2.
i=1

Démonstration. Soit C; le nombre d’éléments de la 7™ colonne qui sont
dans £. On a

n m n n

 C= Y L et Y 1l=n—- ) 1>n- C;

ji=1 i=1 l=j=n 1=j=n i=1
C]=0 ]:’&0

PROPOSITION 5. Supposons que pour n assez grand, il existe k > 0 et
j <n tel que

i) k <o),

i) o (n) <jJ,
i) w(m—r)>j pour r=1,2,..,j—1,
iv) w (nt+s) <k pour s =1,2,..,][2logn].

Alors n est un point d’étranglement pour la fonction n+—>n — o (n).
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R Démonstration. Soit m < n.

. Ou bien on a m <n — jet d’aprés ii), m —w(m) <n —j<n-— w (1),
oubienonan =m + ravec 1 <r <j— 1 etiii) et ii) donnent

m—om<<m—j<m—-omn) <n—ow@).

Soit maintenant m > n.
Ou bien on a m > n + 2 log n et en remarquant que pour tout entier ,

logm 3 .
< —log m, on obtient, pour n assez grand:
log 2 2

;ﬁ
by
|

i
‘g!

Fon a w(m) <

o

3 3
m—w(m)>m — > logm >n+ 2logn — 3 log (n+2logn)
>n>n—w),

: : 3
1 par la croissance de la fonction x — x — -2—log b

{
b

Ou bien on a m <n + [2 log n] et iv) donne alors

w(m) <<k<<w(n)
" ce qui entraine

m—w(m) >n—ow(n).

i b S e btk

:i Démonstration du théoréme 4. La méthode suivante est celle de [Erd 2].

. Pour assurer les hypothéses i) et iii) de la proposition 5, on va demander a
. n d’étre solution du systéme de congruences

n=0 mod B,
n=1 mod B,

| n=j—1 modB;_,

ou B, est un produit de k nombres premiers et By, ..., B;_; des produits
# de j nombres premiers. On pose

j—1
A =, H Bi .
i=0
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D’apres le théoréeme chinois, les solutions de ce systéme de congruences
sont de la forme

n=ny+yA avec O0<ny<A e yeN.
On se donne x assez grand. On choisit
k = [3loglog x], j = [6loglog x].

On prend les facteurs premiers de By, ..., B;_, distincts et compris entre
3log x et 4 log x, ce qui est possible d’aprés le théoréme des nombres
premiers. On a donc:

log A < 6(loglog x)*log (4log x) = O (loglog x)*.

Maintenant, pour 1 <s <2 log x, grice au choix des facteurs premiers
de A on a, pour la solution n, des congruences

(nO+Sa A) =1
et (ny, 4) = By .

Considérons le tableau (a; ,), 0 <s <2logx,0 <y < — — 1 défini par

SRS

as, = w(ng+s+yA) si s #0,

(”o‘l"yA) )
= | — S1 S
B,

D’aprés la proposition 4, la 5™ ligne de ce tableau contient au plus

0 X 1
A (lOg X)3 log 2—1

X
termes supérieures a 3 log log x. D’aprés le lemme 2, 11 y a ¥ (1+o (D) .

I
o

colonnes y pour lesquelles

w(ng+s+yA) <3loglogx pour s =1,...,2[logx],
w(nyg+yA) < 6loglog x pour s = 0.

Pour une de ces valeurs de y, n = n, + y A vérifie les 4 hypothéses de la
proposition 5 et est donc un point d’étranglement de la fonction
n>n— w(n).
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On peut raisonnablement conjecturer que pour & assez petit, la fonction
n+>n — d(n)® a une infinité de points d’étranglement, mais il semble peu
- vraisemblable que ce soit encore vrai pour ¢ = 1. D’aprés le théoréme
des nombres premiers, on peut voir que pour n = 2-3:..p,
n — (o (n) log n)*™ est négatif, et donc cette fonction n’a qu’un nombre
fini de points d’étranglement. On ne peut pas démontrer que n — ® (n)°™
n’a pas de points d’étranglement: La raison en est qu’il n’y a pas de résultats
non triviaux pour la question suivante: Quel est le plus petit 7, tel que
wm+tt) >k. On a évidemment 7, <<2-3-...p, et malheureusement,
nous ne pouvons améliorer ce résultat. C’est une question beaucoup plus
importante que 1’étude de n — w (n)°™.

Il n’est pas difficile de montrer que si z est un point d’étranglement pour
la fonction n — w (M)°™, alors w (n) < (log n)'/?*% 11 semble vraisem-
blable que pour n > n,, il existe m > n avec m — o (M)*™ < n et méme,
m— o m)P™ < n— ™M 7% e qui montrerait que le nombre de
points d’étranglement est fini. Peut-&tre, pour tout n > n,, existe-t-il un
m>n tel que m — d(m) <n — 2. On a besoin de n — 2, parce que

min  m — d(m) <n — 2, mais on ne sait rien a ce sujet.
m=n-+1,n+ 2

Enfin, il est facile de voir que toute fonction additive qui posséde une
infinité de points d’étranglement est croissante, et donc (cf. [Erd 3] et
[Pis]) proportionnelle au logarithme: La démonstration suivante a été
proposée par D. Bernardi et W. Narkiewicz.

Soit f additive ayant une suite infinie n; < n, < ... n, < ... de points
d’étranglement et a < b. On peut trouver, pour », assez grand, dans ’inter-

n, My

valle ( > —) un nombre ¢, premier a ¢ b; on aura alors
a

ca<mn<ch,
ce qui entraine
() +fla) <f(n) <f(c) +f(b)
et f(a) < f ().
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