Zeitschrift: L'Enseignement Mathématique

Herausgeber: Commission Internationale de l'Enseignement Mathématique

Band: 27 (1981)

Heft: 1-2: L'ENSEIGNEMENT MATHÉMATIQUE

Artikel: SUR LA FONCTION: NOMBRE DE FACTEURS PREMIERS DE N

Autor: Erdös, Paul / Nicolas, Jean-Louis

DOI: https://doi.org/10.5169/seals-51737

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 10.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

SUR LA FONCTION: NOMBRE DE FACTEURS PREMIERS DE N

par Paul Erdös et Jean-Louis NICOLAS

ABSTRACT. Let ω (n) be the number of prime factors of n; n is said ω -largely composite if $m \le n \Rightarrow \omega$ (m) $\le \omega$ (n).

The quantity $Q_l(X)$ of such numbers $\leqslant X$ verifies $e^{c_1\sqrt{\log X}} \leqslant Q_l(X) \leqslant e^{c_2\sqrt{\log X}}$. Then we prove

card
$$\left\{ n \leqslant x \mid \omega(n) > \frac{c \log x}{\log \log x} \right\} = x^{1-c+o(1)}$$

and if $\Omega(n)$ is the total number of prime factors of n counted according to multiplicity, $\Omega(n) + \Omega(n+1) \leq \frac{\log n}{\log 2} (1+o(1))$.

An integer n is defined ω -interesting if

$$m > n \Rightarrow \frac{\omega(m)}{m} < \frac{\omega(n)}{n}$$
.

A short study of these numbers is given. We prove that there exists infinitely many strangulation points (n_k) for the function $n - \omega(n)$

i.e. such that:
$$m < n_k \Rightarrow m - \omega(m) < n_k - \omega(n_k)$$

and $m > n_k \Rightarrow m - \omega(m) > n_k - \omega(n_k)$

Finally, we deduce from some formula of A. Selberg the exact order of card $\{n \leqslant x \mid \omega(n) > \alpha \log \log x\}$ for $\alpha > 1$.

Introduction

Soit $n = p_1^{\alpha_1} \dots p_k^{\alpha_k}$ la décomposition en facteurs premiers de n. On définit $\omega(n) = k$ et $\Omega(n) = \alpha_1 + \alpha_2 + \dots + \alpha_k$. Les fonctions ω et Ω sont additives: une fonction f est additive si (m, n) = 1 entraine f(mn) = f(m) + f(n). Hardy et Ramanujan (cf. [Har]) ont démontré en 1917 que la

valeur moyenne de ω (n) était log log n. En 1934, P. Turan donnait une démonstration simple de ce résultat, en prouvant: (cf. [Tur])

$$\sum_{n=1}^{x} (\omega(n) - \log \log x)^{2} = O(x \log \log x).$$

En 1939, M. Kac et P. Erdös démontraient (cf. [Kac]):

$$\lim_{x \to \infty} \frac{1}{x} \operatorname{card} \left\{ n \leqslant x ; \omega(n) \leqslant \log \log x + t \sqrt{\log \log x} \right\}$$
$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{t} e^{-u^2/2} du.$$

Ensuite, P. Erdös ([Erd 1]) et L. G. Sathe ([Sat]) s'intéressaient aux entiers $n \le x$ tels que $\omega(n)$ soit de l'ordre de $c \log \log x$. A. Selberg ([Sel 1]) donnait la « formule de Selberg »

(1)
$$\sum_{n \leq x} z^{\omega(n)} = z F(z) x (\log x)^{z-1} + o(x (\log x)^{\text{Re}(z-2)})$$

où pour R > 0, le O est uniforme pour $|z| \leqslant R$; F(z) est la fonction entière

$$F(z) = \frac{1}{\Gamma(z+1)} \prod_{p} \left(1 + \frac{z}{p-1}\right) \left(1 - \frac{1}{p}\right)^{z}.$$

Cette formule permet d'obtenir plus simplement les résultats de Sathe. Dans la proposition 3, nous suivrons les idées de A. Selberg pour calculer un équivalent de:

card
$$\{n \leqslant x \mid \omega(n) > \alpha \log \log x\}, \quad \alpha > 1.$$

La formule (1) a été étendue par H. Delange (cf. [Del 1] et [Del 2]). Soit p_k le $k^{\text{ième}}$ nombre premier et posons $A_k = 2 \cdot 3 \cdot ... p_k$. Ce nombre A_k est le plus petit entier naturel n tel que $\omega(n) = k$. On dit que n est ω -hautement composé si $m < n \Rightarrow \omega(m) < \omega(n)$. La suite des nombres ω -hautement composés est la suite A_k .

A l'aide du théorème des nombres premiers, on a : $\log A_k \sim p_k \sim k \log k$; on en déduit que pour tout n (cf. [Wri], ch. XVIII):

$$\omega(n) \leqslant \frac{\log n}{\log \log n} \left(1 + o(1)\right)$$

et que $Q_h(X)$ le nombre de nombres ω -hautement composés $\leqslant X$ vérifie:

$$Q_h(X) \sim \frac{\log X}{\log \log X}.$$

On dit maintenant que $n \ge 2$ est ω -largement composé, si $1 \le m \le n$ $\Rightarrow \omega(m) \le \omega(n)$. Si $A_k \le n < A_{k+1}$, n est ω -largement composé si et seulement si $\omega(n) = k$. Soit $Q_l(X)$ le nombre de nombres ω -largement composés $\le X$. Nous démontrerons le théorème suivant:

Théorème 1. Il existe deux constantes $0 < c_1 < c_2$ telles que:

$$\exp(c_1 \sqrt{\log X}) \leqslant Q_l(X) \leqslant \exp(c_2 \sqrt{\log X}).$$

Nous démontrerons ensuite:

Théorème 2. Soit c, 0 < c < 1. On a:

$$f_c(x) = \operatorname{card} \left\{ n \leqslant x ; \omega(n) > \frac{c \log x}{\log \log x} \right\} = x^{1-c+o(1)}.$$

Entre les résultats obtenus par la formule de Selberg et le théorème 2, il y a un trou à boucher, pour estimer par exemple: card $\{n \leqslant x \mid \omega(n) > (\log x)^{\alpha}\}$, $0 < \alpha < 1$. Kolesnik et Straus (cf. [Kol]) ont donné une formule asymptotique assez compliquée qui fournit partiellement une solution à ce problème.

Nous nous intéresserons ensuite aux valeurs extrêmes de f(n) + f(n+1), pour quelques fonctions arithmétiques f. Nous démontrerons en particulier:

Théorème 3. On a, pour $n \to + \infty$:

$$\Omega(n) + \Omega(n+1) \leqslant \frac{\log n}{\log 2} (1 + o(1)).$$

Au paragraphe IV, nous disons qu'un nombre n est ω -intéressant si:

$$m > n \Rightarrow \frac{\omega(m)}{m} < \frac{\omega(n)}{n}$$
.

Cette définition caractérise une famille de nombres n qui ont beaucoup de facteurs premiers, en les comparant avec des nombres m plus grands que n (contrairement à la définition des nombres hautement composés). Nous donnons quelques propriétés de ces nombres.

Enfin, dans le dernier paragraphe, on dit qu'une fonction f a un point d'étranglement en n, si

$$m < n \Rightarrow f(m) < f(n)$$
 et $m > n \Rightarrow f(m) > f(n)$.

Interprétation géométrique: Le graphe de f, contenu dans l'angle droit de sommet (n, f(n)) et de côté parallèle aux axes, s'étrangle en n. Nous démontrerons:

Théorème 4. La fonction $n \to n - \omega$ (n) a une infinité de points d'étranglement.

Pour démontrer ce théorème, nous construirons une infinité de points n tels qu'il existe juste avant n, une plage de nombres ayant beaucoup de facteurs premiers et juste après une plage de nombres ayant peu de facteurs premiers.

§ 1. Démonstration du théorème 1

Minoration: D'après le théorème de Selberg, (cf. [Sel 2] et [Nic]) il existe entre $(1-2\varepsilon)$ log X et $(1-\varepsilon)$ log X un nombre x tel que:

$$\pi(x + f(x)) - \pi(x) \sim \frac{f(x)}{\log x}$$
 et $\pi(x) - \pi(x - f(x)) \sim \frac{f(x)}{\log x}$

pour toute fonction f(x) croissante, vérifiant $f(x) > x^{1/6}$ et telle que $\frac{f(x)}{x}$ décroisse et tende vers 0.

On choisit $f(x) = c \sqrt{x \log x}$. Soit k tel que $p_k \le x < p_{k+1}$. On considère la famille de nombres:

$$n = A_{k-r} q_1 \dots q_r, \quad 0 \leqslant r \leqslant s$$

où $q_1, ..., q_r$ sont des nombres premiers distincts choisis parmi $p_{k+1}, ..., p_{k+s}$. De tels nombres vérifient $\omega(n) = k$ et il y en a 2^s . De plus ils vérifient:

$$n \leqslant A_k \left(\frac{p_{k+s}}{p_{k-s}}\right)^s.$$

On choisit s de façon que $p_{k+s} \leqslant x + f(x)$ et $p_{k-s} \geqslant x - f(x)$ de telle sorte que $s \sim \frac{f(x)}{\log x}$. On a alors:

$$\log \frac{n}{A_k} \leqslant s \log \frac{x + f(x)}{x - f(x)} < 2c^2 \log x.$$

Si l'on choisit $c < \frac{1}{\sqrt{2}}$, on aura donc $A_k \le n < A_{k+1}$ et ces nombres n seront ω -largement composés et $\le X$. On aura donc :

$$Q_l(X) \geqslant 2^s \geqslant \exp\left(\frac{(1-\varepsilon)\log 2}{\sqrt{2}}\sqrt{\log X}\right).$$

Majoration: La majoration de $Q_l(X)$ est basée sur le lemme:

Lemme 1. Soit $p_1 = 2$, $p_2 = 3$, ..., p_k le $k^{ième}$ nombre premier et soit T(x) le nombre de solutions de l'inéquation:

$$x_1p_1 + x_2p_2 + \dots + x_rp_r + \dots \leq x, \quad x_i \in \{0, 1\}.$$

Si $C > \pi \sqrt{\frac{2}{3}}$, on a pour x assez grand:

$$\log T(x) \leqslant C \sqrt{\frac{x}{\log x}}.$$

Démonstration. Le nombre de solutions de l'équation:

$$x_1p_1 + x_2p_2 + \dots + x_rp_r + \dots = n, \quad x_i \in \{0, 1\}$$

est le nombre S(n) de partitions de n en sommants premiers et distincts. Le nombre $T(x) = \sum_{n \leq x} S(n)$ peut être évalué par le théorème taubérien de Hardy et Ramanujan (cf. [Ram]) et Roth et Szekeres donnent la formule [Roth]:

$$\log S(n) = \pi \sqrt{\frac{2}{3}} \sqrt{\frac{n}{\log n}} \left(1 + O\left(\frac{\log \log n}{\log n}\right) \right)$$

et montrent que S(n) est une fonction croissante de n. On a alors: $T(x) \leq x S[x]$.

Nous nous proposons de majorer le nombre d'éléments de l'ensemble:

$$E_k = \{ n \mid \omega(n) = k, n < A_{k+1} \}.$$

Soit $n \in E_k$, $n = q_1^{\alpha_1} \dots q_k^{\alpha_k}$; le nombre $n' = q_1 q_2 \dots q_k$ est sans facteur carré et $n' \in E_k$. De plus $\frac{n}{n'} < p_{k+1}$. On a donc:

card
$$E_{k} \leqslant p_{k+1}$$
 card E'_{k} ,

avec: $E'_{k} = \{n \mid n \text{ sans facteur carr\'e}, \ \omega(n) = k, n < A_{k+1}\}.$ Maintenant si $n \in E'_{k}$, n s'écrit:

$$n = 2^{1-y_k} 3^{1-y_{k-1}} \dots p_k^{1-y_1} p_{k+1}^{x_1} \dots p_{k+r}^{x_r} \dots$$

avec x_i et y_i valant 0 ou 1 et $\sum x_i = \sum y_i$. Il vient:

$$\log \frac{n}{A_k} = x_1 \log \frac{p_{k+1}}{p_k} + \dots + x_r \log \frac{p_{k+r}}{p_k} + \dots + y_1 \log \frac{p_k}{p_k} + \dots + y_r \log \frac{p_k}{p_{k-r+1}} + \dots$$

Le nombre d'éléments de E'_k est donc majoré par le nombre de solutions de l'inéquation, en x_i et y_i valant 0 ou 1:

$$x_1 \log \frac{p_{k+1}}{p_k} + \dots + x_r \log \frac{p_{k+r}}{p_k} + \dots + y_1 \log \frac{p_k}{p_k} + \dots$$
$$+ y_r \log \frac{p_k}{p_{k-r+1}} + \dots \le \log p_{k+1}.$$

On en déduit: card $E'_{k} \leq N_{1} N_{2}$, avec N_{i} = nombre de solutions de l'inéquation ξ_{i} (i=1, 2):

$$(\xi_1)$$
 $x_1 \log \frac{p_{k+1}}{p_k} + \dots + x_r \log \frac{p_{k+r}}{p_k} + \dots \leq \log p_{k+1}$

$$(\xi_2)$$
 $y_1 \log \frac{p_k}{p_k} + \ldots + y_r \log \frac{p_k}{p_{k-r+1}} + \ldots \leqslant \log p_{k+1}$.

Soit R le plus grand nombre r tel que $p_{k+r} < 2p_k$. On coupe l'inéquation ξ_1 en deux :

$$\xi'_1: \sum_{r=1}^R x_r \log \frac{p_{k+r}}{p_k} \le \log p_{k+1},$$
 $\xi''_1: \sum_{r=R+1}^\infty x_r \log \frac{p_{k+r}}{p_k} \le \log p_{k+1}.$

Le nombre de variables de ξ_1'' est en fait fini, et majoré par $p_k p_{k+1}$. Le nombre de variables non nulles d'une solution de ξ_1'' est majoré par 1

 $\frac{1}{\log 2} \log p_{k+1}$. Le nombre N_1'' de solutions de ξ_1'' est majoré par:

$$N_{1}^{"} \leqslant \sum_{j \leq \frac{1}{\log 2} \log p_{k+1}} \binom{p_{k} p_{k+1}}{j} \leqslant \frac{1}{\log 2} \log p_{k+1} (p_{k} p_{k+1})^{\frac{1}{\log 2} \log p_{k+1}}$$

ce qui assure:

$$N_1'' = \exp\left((O\log p_k)^2\right).$$

Il résulte de l'inégalité de Brun-Titchmarsh (cf. [Hal 1] et [Mon]):

$$\pi(x) - \pi(x - y) < 2y / \log y$$

valable pour $1 < y \le x$ que, pour $k \ge 2$:

$$p_{k+r} - p_k > \frac{r}{2} \log (p_{k+r} - p_k) \geqslant \frac{r}{2} \log 2r$$
.

On en déduit que pour $r \leqslant R$, on a:

$$\log \frac{p_{k+r}}{p_k} \geqslant \frac{p_{k+r} - p_k}{p_{k+r}} \geqslant \frac{r \log 2r}{4p_k} \geqslant c \frac{p_r}{p_k}.$$

Toute solution de ξ'_1 est donc solution de l'inéquation:

$$x_1 p_1 + x_2 p_2 + \dots + x_r p_r + \dots \leq \frac{1}{c} p_k \log p_{k+1}$$

et d'après le lemme précédent, on a:

$$\log N'_1 = O(\sqrt{p_k})$$

et le nombre de solutions de ξ_1 vérifie:

$$\log N_1 = O(\sqrt{p_k}).$$

On démontre de même que le nombre N_2 de solutions de ξ_2 vérifie:

$$\log N_2 = O(\sqrt{p_k}).$$

Ce qui entraine:

$$\log (\operatorname{card} E'_{k}) \leqslant \log N_{1} + \log N_{2} = O(\sqrt{p_{k}})$$

et:

card
$$E_k \leqslant p_{k+1}$$
 (card E'_k) = exp $(O(\sqrt{p_k}))$.

Finalement, l'ensemble des nombres ω -largement composés est $\bigcup_{k=1}^{\infty} E_k$; la quantité $Q_l(X)$ de tels nombres $\leqslant X$ vérifie, en posant $A_{k_o} \leqslant X < A_{k_o+1}$, ce qui entraine $\log X \sim p_{k_o}$:

$$Q_l(X) \leqslant \sum_{k=1}^{k_o} \exp\left(O\left(\sqrt{p_k}\right)\right) \leqslant k_0 \exp\left(O\left(\sqrt{p_{k_o}}\right)\right) \leqslant \exp\left(c_2\sqrt{\log X}\right).$$

Remarque. On peut conjecturer que $\log Q_l(X) \sim \pi \sqrt{\frac{2}{3}} \sqrt{\log X}$. En effet si l'on calcule la constante c_2 dans la majoration ci-dessus, on trouve $c_2 = 2\pi\sqrt{\frac{2}{3}}(1+\varepsilon)$, le «2» venant de la formule de Brun-Titchmarsh. Si l'on suppose les nombres premiers très bien répartis autour de p_k , on peut assimiler $\log \frac{p_{k+r}}{p_k}$ à $r \frac{\log p_{k+1}}{p_k}$ et le nombre d'éléments de E'_k serait le nombre de solutions de l'inéquation

$$\sum_{r=1}^{\infty} r x_r + \sum_{r=1}^{\infty} r y_r \leqslant p_k \quad \text{avec} \quad \sum_{i=1}^{\infty} x_i = \sum_{i=1}^{\infty} y_i$$

 $x_i, y_i \in \{0, 1\}$. Le logarithme de ce nombre de solutions est équivalent à $\pi \sqrt{\frac{2}{3}} \sqrt{p_k}$.

§ 2. Démonstration du théorème 2

Minoration: Posons $k = \left[\frac{c \log x}{\log \log x}\right] + 1$ et $A_k = e^{\theta(p_k)} = 2 \cdot 3 \cdot \dots p_k$, où $\theta(x) = \sum_{p \le x} \log p$ est la fonction de Chebichev. Les multiples n de A_k vérifient $\omega(n) > \frac{c \log x}{\log \log x}$. Il y en a $\left[\frac{x}{A_k}\right]$ qui sont inférieurs à x. On a (cf. [Land], § 57):

 $\log A_k = \theta(p_k) = p_k + O(p_k/\log^2 p_k) = k(\log k + \log \log k - 1 + o(1)).$ Il vient en posant $l = \log x$, $l_2 = \log \log x$, $l_3 = \log \log \log x$:

$$k = \frac{c \, l}{l_2} + O(1)$$

$$\log A_k = cl + c(\log c - 1) (1 + o(1)) l/l_2$$

et

$$f_c(x) \geqslant \left[\frac{x}{A_k}\right] \geqslant x^{1-c} \exp\left(c\left(1-\log c\right)\left(1+o\left(1\right)\right)\frac{\log x}{\log\log x}\right).$$

Majoration: En développant par la formule multinomiale (cf. [Com], t. 1, p. 38 ou [Hal 2], p. 147), on obtient:

$$\left(\sum_{p \leq x} \frac{1}{p}\right)^k \geqslant k! \sum_{2 \leq p_{i_1} < \cdots < p_{i_k} \leq x} \frac{1}{p_{i_1} p_{i_2} \cdots p_{i_k}}$$

On a donc, pour $k \in \mathbb{N}$, en désignant par S l'ensemble des nombres sans facteur carrés,

$$\frac{1}{x} \sum_{\substack{n \leq x, n \in S \\ \omega(n) = k}} 1 \leqslant \sum_{\substack{n \leq x, n \in S \\ \omega(n) = k}} \frac{1}{n} \leqslant \frac{1}{k!} \left(\sum_{\substack{p \leq x}} \frac{1}{p} \right)^k.$$

Evaluons maintenant le nombre d'entiers $n \le x$ dont les facteurs premiers sont exactement $p_{i_1}, p_{i_2}, ..., p_{i_k}$. On doit avoir

$$n = p_{i_1}^{\alpha_1} p_{i_2}^{\alpha_2} \dots p_{i_k}^{\alpha_k} \leqslant x; \quad \alpha_j \gg 1.$$

Ce qui entraîne

$$\alpha_1 + \alpha_2 + \dots + \alpha_k \leqslant \left\lceil \frac{\log x}{\log 2} \right\rceil; \quad \alpha_j \geqslant 1.$$

Or le nombre de solutions de cette inéquation est un nombre de combinaisons avec répétition et vaut $\binom{[\log x / \log 2]}{k} \leqslant \frac{1}{k!} \left(\frac{\log x}{\log 2}\right)^k$.

On a donc

$$\frac{1}{x} \sum_{\substack{n \le x \\ \alpha(n) = k}} 1 \leqslant \frac{1}{(k!)^2} \left(\sum_{\substack{p \le x}} \frac{1}{p} \right)^k \left(\frac{\log x}{\log 2} \right)^k$$

et

$$\sum_{\substack{n \leq x \\ \omega(n) \geq k}} 1 \leqslant x \sum_{j \geq k} \frac{\left(\sum_{p \leq x} \frac{1}{p}\right)^j (\log x/\log 2)^j}{(j!)^2}$$

On utilise la majoration $\sum_{j \ge k} \frac{a^j}{(j!)^2} \le \frac{a^k}{(k!)^2} \frac{1}{1 - a/(k+1)^2}$ valable pour $a < (k+1)^2$. On sait d'autre part (cf. [Land] § 28) qu'il existe B tel que $\sum_{p \le x} \frac{1}{p} \le \log \log x + B$, et on choisit:

$$k = \left\lceil \frac{c \log x}{\log \log x} \right\rceil + 1.$$

On obtient alors

$$f_c(x) \leqslant \frac{x(l_2 + B)^k (l/\log 2)^k}{(k!)^2} \left(1 + O\left(\frac{l_2^3}{l}\right)\right)$$

et en remplaçant $\log k!$ par $k \log k + O(k)$, on obtient

$$f_c(x) \leqslant x^{1-c} \exp \left(3c\left(1+o\left(1\right)\right) \frac{\log x \log \log \log x}{\log \log x}\right),$$

ce qui achève la démonstration du théorème 2.

§ 3. Valeurs extrêmes de
$$f(n) + f(n+1)$$

1) Fonction $\sigma(n) = somme des diviseurs de n.$

On remarque d'abord que, lorsque $n \to + \infty$,

(2)
$$\sigma(n) = n \prod_{\substack{p^a \mid \mid n \\ p \leq \log n}} \left(1 + \frac{1}{p} + \dots + \frac{1}{p^a} \right)$$

autrement dit, les facteurs premiers supérieurs à $\log n$ ne modifient guère $\sigma(n)$. De tels facteurs, il y en a au plus $\log n / \log \log n$ et:

$$\prod_{\substack{p^{a} \mid \mid n \\ p > \log n}} \left(1 + \frac{1}{p} + \dots + \frac{1}{p^{a}} \right) \leqslant \prod_{\substack{p^{a} \mid \mid n \\ p > \log n}} \frac{1}{1 - 1/p} \leqslant \left(1 - \frac{1}{\log n} \right)^{-\frac{\log n}{\log \log n}}$$

$$= 1 + \frac{O(1)}{\log \log n}$$

ce qui démontre (2).

Ensuite, on a pour tout n, $\sigma(n) \ge n$ et pour n pair, $\sigma(n) \ge \frac{3}{2}n$. On a donc pour tout n: $\sigma(n) + \sigma(n+1) \ge \frac{5}{2}n$. Inversement, pour k fixé, le nombre $n = 4p_2 p_3 \dots p_k + 1$ est tel que n et n + 1 n'ont pas (à part 2) de facteurs premiers inférieurs à $(1-\varepsilon)\log n$ et donc vérifie: $\sigma(n) + \sigma(n+1) = \frac{5}{2}n(1+o(1))$.

On obtient les grandes valeurs de $\sigma(n) + \sigma(n+1)$ de la façon suivante: Il résulte de (2) que

$$\sigma(n) + \sigma(n+1) \le n(1+o(1)) (P_1 + P_2)$$

avec

$$P_1 = \prod_{\substack{p \mid n \ p \leq \log n}} \frac{1}{1 - 1/p}$$
 et $P_2 = \prod_{\substack{p \mid n+1 \ p \leq \log n}} \frac{1}{1 - 1/p}$.

Comme P_1 et P_2 sont supérieurs à 1, $P_1 + P_2 \leqslant P_1 P_2 + 1$ et

$$P_1 P_2 \leqslant \prod_{p \leq \log n} \frac{1}{1 - 1/p} \sim e^{\gamma} \log \log n$$
,

où γ est la constante d'Euler d'après la formule de Mertens (cf. [Wri] § 22.8). Cela donne pour tout n

$$\sigma(n) + \sigma(n+1) \leqslant n(1+o(1))e^{\gamma} \log \log n.$$

Ce résultat est le meilleur possible puisque pour une infinité de n, on a (cf. [Wri] § 22.9):

$$\sigma(n) \sim n e^{\gamma} \log \log n$$
.

Pour que la majoration $P_1 + P_2 \le P_1 P_2 + 1$ soit bonne, il faut choisir P_1 ou P_2 voisin de 1. L'examen des tables de max $\sigma(n)$ et de

$$\max_{n \le x} (\sigma(n) + \sigma(n-1))$$

montre que souvent un nombre N hautement abondant (c'est-à-dire vérifiant $n < N \Rightarrow \sigma(n) < \sigma(N)$) vérifie: $\max_{n \le N+1} (\sigma(n) + \sigma(n-1)) = \sigma(N) + \sigma(N-1)$ ou $\sigma(N+1) + \sigma(N)$.

2) Indicateur d'Euler ϕ .

On a une relation analogue à (2):

$$\phi(n) = n \prod_{p|n} \left(1 - \frac{1}{p}\right) = n\left(1 + o\left(1\right)\right) \prod_{\substack{p|n \\ p \le \log n}} \left(1 - \frac{1}{p}\right).$$

On démontre comme précédemment que pour tout n > 1, on a

$$\phi(n) + \phi(n+1) \leqslant \frac{3}{2}n$$

et que, pour une infinité de n

$$\phi(n) + \phi(n+1) \sim \frac{3}{2}n.$$

Pour les petites valeurs de $\phi(n) + \phi(n+1)$, on a

$$\phi(n) + \phi(n+1) \geqslant n(1+o(1))(P_1+P_2) \geqslant 2n(1+o(1))\sqrt{P_1P_2}$$
,

avec

$$P_1 = \prod_{\substack{p \mid n \\ p \le \log n}} \left(1 - \frac{1}{p} \right) \quad \text{et} \quad P_2 = \prod_{\substack{p \mid n+1 \\ p \le \log n}} \left(1 - \frac{1}{p} \right),$$

et comme

$$P_1 P_2 \geqslant \prod_{p \le \log n} (1 - 1/p) \sim \frac{e^{-\gamma}}{\log \log n}$$

on a

$$\phi(n) + \phi(n+1) \geqslant \frac{2e^{-\gamma/2} n(1+o(1))}{\sqrt{\log \log n}}.$$

Cette inégalité est une égalité pour les n construits de la façon suivante: Soit $k \in \mathbb{N}^*$. On pose $P_k = \prod_{p \leq p_k} (1 - 1/p)$. Soit k' le plus grand entier tel que $P_{k'} \geqslant \sqrt{P_k}$; on pose alors $R = p_1 p_2 \dots p_{k'}$; $S = p_{k'+1} \dots p_k$; on a $\frac{\phi(R)}{R} = \frac{\phi(S)}{S} (1 + o(1))$ et l'on prend pour n la plus petite solution des congruences: $n \equiv 0 \mod R$; $n + 1 \equiv 0 \mod S$. Cette solution vérifie $R \leqslant n < RS = \exp(\theta(p_k))$, ce qui montre que n tend vers l'infini avec k,

et
$$\frac{\phi(n)}{n} \leqslant \frac{\phi(R)}{R}$$
 et $\frac{\phi(n+1)}{n+1} \leqslant \frac{\phi(S)}{S}$.

3) Fonction Ω : Démonstration du théorème 3.

PROPOSITION 1. Soit $\varepsilon > 0$ et k > 0. On écrit $n(n+1) = U_k V_k$ où U_k est le produit des facteurs premiers $\leqslant k$. Alors il existe $n_0(k, \varepsilon)$ tel que pour $n \geqslant n_0$, on ait $U_k \leqslant n^{1+\varepsilon}$.

Le théorème 3 résulte de cette proposition puisque pour $k \geqslant 2$:

$$\Omega(n) + \Omega(n+1) = \Omega(n(n+1)) = \Omega(U_k) + \Omega(V_k)$$

$$\leq \frac{\log U_k}{\log 2} + \frac{\log V_k}{\log k}$$

$$\leq (1+\varepsilon) \frac{\log n}{\log 2} + \frac{2\log n}{\log k}, \quad \text{pour } n \geq n_0.$$

Etant donné η , il suffit donc de choisir ε assez petit et k assez grand pour obtenir: $\Omega(n) + \Omega(n+1) \leqslant \frac{\log n}{\log 2} (1+\eta)$ pour $n \geqslant n_0$.

La proposition 1 résulte de la proposition 2 (cf. [Rid] et [Sch], th 4F), comme nous l'a précisé M. Langevin:

Proposition 2 (Ridout). Soit θ un nombre algébrique $\neq 0$. Soit $P_1, P_2, ..., P_s, Q_1, Q_2, ..., Q_t$ des nombres premiers distincts, et $\delta > 0$. Il y a un nombre fini de nombres rationnels a/b avec:

$$a = a' P_1^{\alpha_1} P_2^{\alpha_2} \dots P_s^{\alpha_s}$$
 et $b = b' Q_1^{\beta_1} Q_2^{\beta_2} \dots Q_t^{\beta_t}$

avec: $\alpha_1, \alpha_2 \dots \alpha_s, \beta_1, \beta_2, \dots, \beta_t \in \mathbb{N}$ et $a', b' \in \mathbb{N}^*$ tels que

$$\left| \theta - \frac{a}{b} \right| < \frac{1}{\left| a'b' \right| \left| ab \right|^{\delta}}.$$

Démonstration de la proposition 1. Supposons que pour une infinité de n, on ait $U_k > n^{1+\varepsilon}$. On peut partager les nombres premiers $\leq k$ en deux parties $P_1, P_2, \dots P_s$ et $Q_1, Q_2, \dots Q_t$, de telle sorte qu'il y ait une infinité de n tels que $U_k > n^{1+\varepsilon}$ et tels que

$$\begin{split} p \leqslant k &\quad \text{et} &\quad p \mid n \Rightarrow p \in \{P_1, \dots, P_s\}, \\ p \leqslant k &\quad \text{et} &\quad p \mid n+1 \Rightarrow p \in \{Q_1, \dots, Q_t\}. \end{split}$$

On écrit $n = n' P_1^{\alpha_1} \dots P_s^{\alpha_s}$ et $(n+1) = n'' Q_1^{\beta_1} \dots Q_t^{\beta_t}$ et l'on choisit $\theta = 1$, $\delta = \varepsilon/3$. Il y aurait alors une infinité de nombres rationnels $\frac{n+1}{n}$, solution de

$$\left| 1 - \frac{n+1}{n} \right| < \frac{1}{\left| n'n'' \right| \left(n(n+1) \right)^{\delta}}$$

puisque $n' n'' = V_k \leqslant n^{1-\varepsilon} + n^{-\varepsilon}$, ce qui contredirait la proposition 2.

Les valeurs de $n \le 300\,000$ vérifiant

$$m < n \Rightarrow \Omega(m(m+1)) < \Omega(n(n+1))$$

sont (avec, entre parenthèses la valeur de $\Omega(n(n+1))$): 2 (2); 3 (3); 7 (4); 8 (5); 15 (6); 32 (7); 63 (9); 224 (10); 255 (11); 512 (13); 3968 (14); 4095 (17); 14436 (18); 32768 (19); 65535 (20); 180224 (22); 262143 (24).

On constate que les nombres $2^n + \{-1, 0, +1\}$, lorsque n a de nombreux facteurs premiers, figurent en bonne place dans cette table. Malheureusement, la proposition 2 n'est pas effective, et il n'est pas possible de montrer par cette méthode que la table en contient une infinité.

4) Fonction ω .

Nous avons rappelé dans l'introduction que pour tout n, on a

$$\omega(n) \leqslant \frac{\log n}{\log \log n} \left(1 + o(1)\right).$$

Soit
$$l = \overline{\lim} \frac{\omega(n) + \omega(n+1)}{\log n / \log \log n}$$
.

On a $1 \le l \le 2$ de façon évidente. On a probablement l = 1, mais il semble impossible de le démontrer.

La suite des nombres n tels que $m < n \Rightarrow \omega \left(m \left(m + 1 \right) \right) < \omega \left(n \left(n + 1 \right) \right)$ est: 1, 2, 5, 14, 65, 209, 714, 7314, 28570, 254540, etc ... On a en particulier 714 = $2 \cdot 3 \cdot 7 \cdot 17$ et 715 = $5 \cdot 11 \cdot 13$. L'équation

$$n(n+1) = 2 \cdot 3 \cdot 5 \cdot \dots p_k$$

a-t-elle des solutions > 714? (cf. [Nel]).

Pour les petites valeurs de $\omega(n) + \omega(n+1)$, le résultat de Chen (pour une infinité de nombres premiers p, on a $\Omega(2p+1) \le 2$, cf. [Hal 1], chap 11) montre que pour une infinité de n, on a

$$\omega(n) + \omega(n+1) \leqslant \Omega(n) + \Omega(n+1) \leqslant 4.$$

L'ultime amélioration du résultat de Chen $(\Omega(2p+1) = 1)$ permettrait de remplacer 4 par 3 qui est le meilleur résultat possible pour Ω .

Si l'on a $\omega(n) + \omega(n+1) = 2$, n et n+1 doivent être des puissances de nombres premiers. L'un des deux étant pair, doit donc être une puissance de 2. Cette situation se produira en particulier si n est un nombre premier de Mersenne $(n=2^p-1)$ avec p premier) ou si n+1 est un nombre premier de Fermat (n+1) D'autre part l'équation $2^n \pm 1 = p^a$

avec $a \ge 2$ qui est un cas particulier de l'équation de Catalan, n'admet qu'un nombre fini de solutions (cf. [Tij]).

L'existence d'une infinité d'entiers n tels que $\omega(n) + \omega(n+1) = 2$ est donc équivalente à l'existence d'une infinité de nombres premiers de Mersenne ou de Fermat.

§ 4. Nombres ω-intéressants

Définition. On dit que n est ω -intéressant, si l'on a

$$m > n \Rightarrow \frac{\omega(m)}{m} < \frac{\omega(n)}{n}$$
.

Interprétation géométrique: pour m > n, le point $(m, \omega(m))$ est situé sous la droite joignant l'origine à $(n, \omega(n))$.

Propriété 1: Pour $k \ge 1$, le nombre $A_k = 2 \cdot 3 \cdot ... p_k$ est ω -intéressant. En effet: si ω $(m) \le k$ on a bien: ω $(m)/m < \omega$ $(A_k)/A_k$ pour $m > A_k$. Et si ω $(m) = k + \Delta$, $\Delta > 0$, on a alors $m \ge A_k$ 3^{Δ} et:

$$\frac{\omega\left(m\right)}{m} \leqslant \frac{k+\Delta}{A_k \, 3^{\Delta}} \; = \; \frac{\omega\left(A_k\right)}{A_k} \frac{\left(1+\frac{\Delta}{k}\right)}{3^{\Delta}} \leqslant \frac{\omega\left(A_k\right)}{A_k} \frac{1+\Delta}{3^{\Delta}} \; < \; \frac{\omega\left(A_k\right)}{A_k} \, .$$

Propriété 2: Soit n vérifiant:

$$A_k < n < A_{k+1} \left(1 - \frac{1}{k}\right)$$
 et $\omega(n) = k$

alors n est ω-intéressant.

Démonstration: Soit m > n, ou bien on a: $m \ge A_{k+1}$ et d'après la propriété 1:

$$\frac{\omega\left(m\right)}{m} < \frac{\omega\left(A_{k+1}\right)}{A_{k+1}} \leqslant \frac{(k+1)\left(1-\frac{1}{k}\right)}{n} < \frac{\omega\left(n\right)}{n}$$

ou bien on a: $n < m < A_{k+1}$ et cela entraine $\omega(m)/m < k/n = \omega(n)/n$. Propriété 3: Pour une infinité de valeurs de k, il existe un nombre ω -intéressant, plus grand que A_k et ayant k-1 facteurs premiers. Démonstration: Soit k tel que

(3)
$$\frac{p_{k+1}}{p_k+1} > 1 + \frac{1}{k-1};$$

alors $n = 2 \cdot 3 \cdot ... p_{k-1} (p_k+1)$ est ω -intéressant:

Remarquons d'abord que l'on a $A_k < n < n' = A_k \frac{p_{k+1}}{p_k}$ et que pour $k \ge 2$, d'après la propriété 2, n' est ω -intéressant. Ensuite, $\omega(n) = k - 1$; si m vérifie n < m < n' on a: $\omega(m) \le k - 1$; si m vérifie $n' \le m$, on a

$$\frac{\omega(m)}{m} < \frac{\omega(n')}{n'} = \frac{k}{n'} < \frac{k-1}{n};$$

d'après l'hypothèse.

On sait qu'il existe une infinité de nombres premiers tels que $p_{k+1} - p_k > 2 \log p_k$ (cf. [Pra], p. 157). Pour ces nombres on aura

$$\frac{p_{k+1}}{p_k+1} > 1 + \frac{2\log p_k - 1}{p_k+1}$$

et comme $p_k \sim k \log k$, cela entraine la relation (3).

Remarque 1. Si k vérifie $p_{k+1} - p_k < \frac{p_k}{k-1}$ il est facile de voir qu'il n'existe aucun nombre ω -intéressant compris entre A_k et $n' = A_k \frac{p_{k+1}}{p_k}$. Cette situation se produit pour une infinité de k. On peut donc conjecturer

Cette situation se produit pour une infinité de k. On peut donc conjecturer que pour une infinité de k, les nombres ω -intéressants compris entre A_k et A_{k+1} vérifient $\omega(n) \geqslant k$.

Remarque 2. Désignons par n'' le plus petit entier suivant A_k et ayant (k-1) facteurs premiers. On a $n''
leq n = A_k
leq 1 + rac{1}{p_k}
leq .$ Il est possible d'obtenir une meilleure majoration de n'' de la façon suivante: Le théorème de Sylvester-Schur affirme que P(u, r), le plus grand facteur premier du produit (u+1) ... (u+r) est plus grand que r si $u \ge r$. (cf. [Lan]).

Considérons le produit : $\prod_{t=1}^{p_{k-2}} (p_{k-1} p_k + t)$. Il doit avoir un facteur premier $q > p_{k-2}$, et soit $t = t_q$ tel que q divise $p_{k-1} p_k + t$. Alors le nombre $n = 2 \cdot 3 \cdot \dots p_{k-2} (p_{k-1} p_k + t_q)$ a k-1 facteurs premiers et l'on a $n \leqslant A_k (1 + p_{k-2}/p_k p_{k-1})$. Le résultat de Ramachandra (cf. [Ramac]):

si
$$r^{3/2} \leqslant u \leqslant r^{\log \log r}$$
, on a: $P(u, r) > r^{1+2\lambda}$ avec $\lambda = -\left(8 + \frac{\log u}{\log r}\right)$

permet de montrer qu'il existe $\alpha > 0$ tel que $n'' \leqslant A_k \left(1 + \frac{1}{p_k^{1+\alpha}}\right)$. On peut prendre $\alpha = 0,000974$.

Propriété 4. Soit n un nombre ω -intéressant, $n \geqslant (k-1) A_k$ alors $\omega(n) \geqslant k$. Cela entraine qu'un nombre ω -intéressant compris entre A_k et A_{k+1} a plus de (k-1) facteurs premiers.

Démonstration. Soit $n \ge (k-1) A_k$ vérifiant $\omega(n) \le k-1$; on écrit $A_k(t-1) \le n < A_k t$, t entier.

On a donc $t \ge k$. Ce nombre n ne peut pas être ω -intéressant puisque

$$\frac{\omega(n)}{n} \leqslant \frac{k-1}{A_k(t-1)} \leqslant \frac{k}{A_k t} \leqslant \frac{\omega(A_k t)}{A_k t}.$$

Conjecture: Peut-on remplacer $n \ge (k-1) A_k$ par $n \ge (1+\varepsilon(k)) A_k$ avec $\lim_{k \to +\infty} \varepsilon(k) = 0$?

Finalement, on voit que l'ensemble des nombres ω -intéressants coïncide presque avec l'ensemble des nombres ω -largement composés: Les deux ensembles ont une infinité de points communs, mais il existe une infinité de nombres ω -largement composés non ω -intéressants (exemple: $n = (p_{k+1} - 1) A_k$ par la propriété 2) et la propriété 3 fournit un exemple de la situation inverse.

§ 5. Démonstration du théorème 4

Proposition 3. Posons $N_k(x) = \operatorname{card} \{n \leqslant x \mid \omega(n) > k\}$. Pour α fixé, $\alpha > 1$, on a lorsque $x \to +\infty$ (avec les notations de l'introduction)

$$N_{[\alpha \log \log x]}(x) = \frac{1}{\sqrt{2\pi}} \frac{F(\alpha)}{\alpha - 1} \alpha^{\frac{1}{2} + \{\alpha \log \log x\}} \frac{x(1 + O(1/\log \log x))}{(\log x)^{1 - \alpha + \alpha \log \alpha} \sqrt{\log \log x}}$$

 $où \{y\}$ désigne la partie fractionnaire de y.

Pour $0 < \alpha < 1$, la formule ci-dessus est valable $\left(\text{en remplaçant } \frac{F\left(\alpha\right)}{\alpha - 1}\right)$ par $\frac{F\left(\alpha\right)}{1 - \alpha}$ pour estimer $\operatorname{card}\left\{n \leqslant x \mid \omega\left(n\right) \leqslant \alpha \log\log x\right\}$.

Démonstration (communiquée par H. Delange). Soit $P_x(z) = \sum_{n \le x} z^{\omega(n)}$. Le théorème des résidus montre que:

$$N_k(x) = \frac{1}{2i\pi} \int_{\gamma} \frac{P_x(z)}{(z-1) z^{k+1}} dz$$

où γ est un cercle de centre 0 et de rayon r > 1. On applique la formule de Selberg (1)

$$N_k(x) = \frac{1}{2i\pi} \int_{\mathcal{X}} \frac{z F(z) x (\log x)^{z-1}}{(z-1) z^{k+1}} dz + R_1(x),$$

avec

$$R_1(x) = \frac{1}{2i\pi} \int_{\gamma} \frac{O(x (\log x)^{\text{Rez}-2})}{(z-1) z^{k+1}} dz = O\left(\frac{x (\log x)^{r-2}}{(r-1) r^k}\right)$$

On pose $\frac{z F(z)}{z-1} = G(z)$. G est holomorphe en z = r et l'on écrit

$$G(z) = G(r) + (z-r)G'(r) + (z-r)^{2}H(z,r),$$

avec $H(r,r)=\frac{1}{2}$ G''(r). Par la formule de Taylor, il existe $\lambda, 0<\lambda<1$ tel que $H(z,r)=\frac{1}{2}$ $G''(\lambda z+(1-\lambda)r)$. La fonction H est donc continue et H(z,r) est bornée uniformément pour $z\in\gamma, 1< r_1\leqslant r\leqslant r_2$. On pose log $\log x=l$. On obtient

$$\begin{split} N_k(x) &= \frac{1}{2i\pi \log x} \int_{\gamma} \frac{x \, G(z) e^{zl}}{z^{k+1}} \, dz + R_1(x) \\ &= \frac{1}{2i\pi \log x} \left(\int_{\gamma} \frac{x \, G(r) \, e^{zl}}{z^{k+1}} \, dz + \int_{\gamma} \frac{x \, (z-r) \, e^{zl} G'(r)}{z^{k+1}} \, dz \right) + R_1(x) + R_2(x) \\ &= \frac{x}{\log x} \, G(r) \, \frac{l^k}{k!} + \frac{x}{\log x} \, G'(r) \, \left(\frac{l^{k-1}}{(k-1)!} - \frac{r \, l^k}{k!} \right) + R_1(x) + R_2(x) \; . \end{split}$$

On choisit $r = \frac{k}{l}$ de telle sorte que le coefficient de G'(r) s'annule, et on a

$$R_2(x) = \frac{1}{2i\pi \log x} \int_{\gamma} \frac{x(z-r)^2 H(z,r) e^{zl}}{z^{k+1}} dz.$$

Si l'on pose $z = r e^{i\theta}$, on a $|z - r|^2 |e^{zl}| = 2r^2 (1 - \cos \theta) e^{rl \cos \theta}$.

On peut montrer que, lorsque $\alpha \to +\infty$, on a $\int_0^{2\pi} (1-\cos\theta) e^{\alpha \cos\theta} d\theta$ = $O(e^{\alpha}\alpha^{-3/2})$ (cf. par exemple, [Dieu], ch. IV). On en déduit que

$$R_2(x) = O\left(\frac{x}{\log x} \frac{e^{rl}}{l^{3/2} r^{k-1/2}}\right)$$

et finalement

$$N_k(x) = \frac{x}{\log x} G(r) \frac{l^k}{k!} + O\left(\frac{x}{\log x} \frac{e^{rl}}{l^{3/2} r^{k-1/2}}\right) + O\left(\frac{x (\log x)^{r-2}}{(r-1) r^k}\right)$$

On pose
$$k = [\alpha \log \log x], r = \frac{k}{l} = \alpha + O\left(\frac{1}{\log \log x}\right)$$
, on a donc $G(r)$

=
$$G(\alpha)\left(1+O\left(\frac{1}{l}\right)\right)$$
, on évalue chacun des termes ci-dessus (en particu-

lier k! par la formule de Stirling: $k! \sim k^k e^{-k} \sqrt{2\pi k}$) et on obtient la proposition 3.

Lorsque $0 < \alpha < 1$, on suit la même méthode, en intégrant sur un cercle de rayon $r = \frac{k}{l} < 1$.

PROPOSITION 4. Soit $(n_0, A) = 1$, et $\alpha > 0$. Alors on a, avec $d(n) = \sum_{d \mid n} 1$,

(i)
$$\sum_{\substack{n \equiv n_0 \bmod A \\ n \leq x}} d(n) \leqslant \frac{2x}{A} \left(1 + \frac{1}{2} \log x \right) + 2\sqrt{x},$$

(ii)
$$\sum_{\substack{n \equiv n_0 \bmod A \\ n \leq x \\ \omega(n) \geq \alpha \log \log x}} 1 \leqslant \frac{1}{(\log x)^{\alpha \log 2}} \left(\frac{2x}{A} \left(1 + \frac{1}{2} \log x \right) + 2\sqrt{x} \right)$$

En particulier cette dernière somme est $O\left(\frac{x}{A} \frac{1}{(\log x)^{\alpha \log 2 - 1}}\right)$ lorsque $A = O(\sqrt{x})$.

Démonstration. La formule (ii) est une conséquence immédiate de (i): Les nombres pour lesquels $\omega(n) \geqslant \alpha \log \log x$ vérifient $d(n) \geqslant 2^{\omega(n)}$ soit $d(n) \geqslant (\log x)^{\alpha \log 2}$.

On a

$$\sum_{\substack{n \equiv n_0 \bmod A \\ n \leq x}} d(n) \leqslant \sum_{\substack{n \equiv n_0 \bmod A \\ n \leq x}} \sum_{\substack{d \leq \sqrt{n} \\ d \mid n}} 2 \leqslant \sum_{\substack{d \leq \sqrt{x} \\ d \mid n}} 2 \sum_{\substack{n \equiv n_0 \bmod A \\ d \mid n \\ n \leq x}} 1.$$

Or les nombres n sur lesquels s'effectue cette dernière sommation vérifient $n = n_0 + y$ $A \equiv 0 \mod d$. Si (A, d) = 1, cette congruence a une solution et une seule en y dans chaque intervalle de longueur d. Si $(A, d) \neq 1$, pour que cette congruence ait une solution, on doit avoir $(A, d) \mid n_0$, d'où $(A, n_0) \neq 1$; il n'y a donc pas de solutions. Finalement, il y a au plus une solution dans chaque intervalle de longueur d et la somme est

$$\leqslant \sum_{d \leq \sqrt{x}} 2\left(\frac{x}{Ad} + 1\right) \leqslant 2\sqrt{x} + \frac{2x}{A}\left(1 + \frac{1}{2}\log x\right).$$

Remarque. Dans le cas A = 1, $\alpha = 2$, on trouve dans l'estimation (ii) le même exposant pour log x que dans la proposition 3. Ceci est à rapprocher du fait que (cf. [And])

$$\sum_{n \leq x; \ \omega(n) \sim 2 \log \log x} d(n) \sim x \log x.$$

Par des méthodes plus compliquées, il est possible d'obtenir pour (ii) une meilleure majoration.

Lemme 2. Soit $M=(a_{ij})$ une matrice à m lignes et n colonnes à coefficients dans un corps K. Soit $\mathscr P$ une partie de K et soit L_i le nombre d'éléments de la $i^{\text{ème}}$ ligne de M qui sont dans $\mathscr P$. Alors il y a au moins $n-\sum\limits_{i=1}^m L_i$ colonnes de M dont tous les éléments sont dans $K-\mathscr P$.

Démonstration. Soit C_j le nombre d'éléments de la $j^{\text{ème}}$ colonne qui sont dans \mathscr{P} . On a

$$\sum_{j=1}^{n} C_{j} = \sum_{i=1}^{m} L_{i} \quad \text{et} \sum_{\substack{1 \leq j \leq n \\ C_{j} = 0}} 1 = n - \sum_{\substack{1 \leq j \leq n \\ C_{j} \neq 0}}^{n} 1 \geqslant n - \sum_{j=1}^{n} C_{j}$$

$$= n - \sum_{i=1}^{m} L_{i}.$$

Proposition 5. Supposons que pour n assez grand, il existe k > 0 et j < n tel que

- i) $k \leqslant \omega(n)$,
- ii) $\omega(n) \leqslant j$,
- iii) $\omega(n-r) \ge j$ pour r = 1, 2, ..., j 1,
- iv) $\omega(n+s) \le k$ pour $s = 1, 2, ..., [2 \log n]$.

Alors n est un point d'étranglement pour la fonction $n \mapsto n - \omega(n)$.

Démonstration. Soit m < n.

Ou bien on a $m \le n - j$ et d'après ii), $m - \omega(m) < n - j \le n - \omega(n)$, ou bien on a n = m + r avec $1 \le r \le j - 1$ et iii) et ii) donnent

$$m - \omega(m) \leqslant m - j \leqslant m - \omega(n) < n - \omega(n)$$
.

Soit maintenant m > n.

Ou bien on a $m > n + 2 \log n$ et en remarquant que pour tout entier m, on a $\omega(m) \le \frac{\log m}{\log 2} \le \frac{3}{2} \log m$, on obtient, pour n assez grand:

$$m - \omega(m) \geqslant m - \frac{3}{2} \log m > n + 2 \log n - \frac{3}{2} \log (n + 2 \log n)$$

> $n > n - \omega(n)$,

par la croissance de la fonction $x \mapsto x - \frac{3}{2} \log x$.

Ou bien on a $m \le n + [2 \log n]$ et iv) donne alors

$$\omega(m) \leqslant k \leqslant \omega(n)$$

ce qui entraîne

$$m - \omega(m) > n - \omega(n)$$
.

Démonstration du théorème 4. La méthode suivante est celle de [Erd 2]. Pour assurer les hypothèses i) et iii) de la proposition 5, on va demander à n d'être solution du système de congruences

$$\left\{ \begin{array}{ll} n \equiv 0 & \mod B_0 \\ n \equiv 1 & \mod B_1 \\ \vdots \\ \vdots \\ n \equiv j-1 & \mod B_{j-1} \end{array} \right.$$

où B_0 est un produit de k nombres premiers et $B_1, ..., B_{j-1}$ des produits de j nombres premiers. On pose

$$A = \prod_{i=0}^{j-1} B_i .$$

D'après le théorème chinois, les solutions de ce système de congruences sont de la forme

$$n = n_0 + y A$$
 avec $0 \le n_0 < A$ et $y \in \mathbb{N}$.

On se donne x assez grand. On choisit

$$k = [3 \log \log x], j = [6 \log \log x].$$

On prend les facteurs premiers de B_0 , ..., B_{j-1} distincts et compris entre $3 \log x$ et $4 \log x$, ce qui est possible d'après le théorème des nombres premiers. On a donc:

$$\log A \leqslant 6(\log \log x)^2 \log (4 \log x) = O(\log \log x)^3.$$

Maintenant, pour $1 \le s \le 2 \log x$, grâce au choix des facteurs premiers de A on a, pour la solution n_0 des congruences

$$(n_0 + s, A) = 1$$

 $(n_0, A) = B_0$.

et

Considérons le tableau $(a_{s,y})$, $0 \leqslant s \leqslant 2 \log x$, $0 \leqslant y \leqslant \frac{x}{A} - 1$ défini par

$$a_{s,y} = \omega (n_0 + s + y A)$$
 si $s \neq 0$,
 $= \omega \left(\frac{n_0 + y A}{B_0}\right)$ si $s = 0$.

D'après la proposition 4, la s'ème ligne de ce tableau contient au plus

$$O\left(\frac{x}{A}\frac{1}{(\log x)^{3\log 2-1}}\right)$$

termes supérieures à 3 log log x. D'après le lemme 2, il y a $\frac{x}{A}$ (1+o(1)) colonnes y pour lesquelles

$$\omega(n_0 + s + y A) \le 3 \log \log x$$
 pour $s = 1, ..., 2 [\log x]$, $\omega(n_0 + y A) \le 6 \log \log x$ pour $s = 0$.

Pour une de ces valeurs de y, $n = n_0 + y A$ vérifie les 4 hypothèses de la proposition 5 et est donc un point d'étranglement de la fonction $n \mapsto n - \omega(n)$.

On peut raisonnablement conjecturer que pour ε assez petit, la fonction $n\mapsto n-d$ $(n)^{\varepsilon}$ a une infinité de points d'étranglement, mais il semble peu vraisemblable que ce soit encore vrai pour $\varepsilon=1$. D'après le théorème des nombres premiers, on peut voir que pour $n=2\cdot 3\cdot ... p_k$, $n-(\omega(n)\log n)^{\omega(n)}$ est négatif, et donc cette fonction n'a qu'un nombre fini de points d'étranglement. On ne peut pas démontrer que $n-\omega(n)^{\omega(n)}$ n'a pas de points d'étranglement: La raison en est qu'il n'y a pas de résultats non triviaux pour la question suivante: Quel est le plus petit t_k tel que $\omega(n+t_k) \geqslant k$. On a évidemment $t_k \leqslant 2\cdot 3\cdot ... p_k$ et malheureusement, nous ne pouvons améliorer ce résultat. C'est une question beaucoup plus importante que l'étude de $n-\omega(n)^{\omega(n)}$.

Il n'est pas difficile de montrer que si n est un point d'étranglement pour la fonction $n-\omega(n)^{\omega(n)}$, alors $\omega(n)<(\log n)^{1/2+\varepsilon}$. Il semble vraisemblable que pour $n>n_0$, il existe m>n avec $m-\omega(m)^{\omega(m)}< n$ et même, $m-\omega(m)^{\omega(m)}< n-e^{(\log n)^{1-\varepsilon}}$, ce qui montrerait que le nombre de points d'étranglement est fini. Peut-être, pour tout $n>n_0$, existe-t-il un m>n tel que m-d(m)< n-2. On a besoin de n-2, parce que $\min_{m=n+1,n+2} m-d(m) \le n-2$, mais on ne sait rien à ce sujet.

Enfin, il est facile de voir que toute fonction additive qui possède une infinité de points d'étranglement est croissante, et donc (cf. [Erd 3] et [Pis]) proportionnelle au logarithme: La démonstration suivante a été proposée par D. Bernardi et W. Narkiewicz.

Soit f additive ayant une suite infinie $n_1 < n_2 < \dots n_k < \dots$ de points d'étranglement et a < b. On peut trouver, pour n_k assez grand, dans l'inter-

valle
$$\left(\frac{n_k}{b}, \frac{n_k}{a}\right)$$
 un nombre c, premier à ab ; on aura alors

$$c a < n_k < c b$$
,

ce qui entraîne

$$f(c) + f(a) < f(n_k) < f(c) + f(b)$$

 $\operatorname{et} f(a) < f(b).$

RÉFÉRENCES

[And] Anderson, I. On primitive sequences. J. London Math. Soc. 42 (1967), 137-148.
 [Com] Comtet, L. Analyse combinatoire. Collection Sup, Presses Universitaires de France, 1970.

[Del 1] Delange, H. Sur des formules dues à A. Selberg. Bull. Sci. Math. 83 (1959), 101-111.

- [Del 2] Delange, H. Sur des formules de A. Selberg. Acta Arithmetica 19 (1971), 105-146.
- [Dieu] DIEUDONNÉ, J. Calcul infinitésimal. Hermann, Paris, 1968. collection Méthodes.
- [Erd 1] Erd Sp. P. On the integers having exactly k prime factors. Ann. of Math. (2) 49 (1948), 53-66.
- [Erd 2] On arithmetical properties of Lambert series. *Journal Indian Math.* Soc. 12 (1948), 63-66.
- [Erd 3] On the distribution function of additive functions. Ann. of Math. (2) 47 (1946), 1-20.
- [Hal 1] HALBERSTAM, H. and H. E. RICHERT. Sieve Methods. Academic Press, 1974.
- [Hal 2] Halberstam, H. and K. F. Roth. Sequences. Oxford, at the Clarendon Press, 1966.
- [Har] HARDY, G. H. and S. RAMANUJAN. The normal number of prime factors of a number n. Quart. J. of Math. 48 (1917), 76-92 et Collected papers of Ramanujan, 262-275.
- [Kac] Erdös, P. and M. Kac. On the Gaussian law of errors in the theory of additive functions. *Proc. Nat. Acad. Sci. 25* (1939), 206-207.
 - The Gaussian law of errors in the theory of additive number theoretic functions. *Amer. J. Math.* 62 (1940), 738-742.
- [Kol] Kolesnik, G. and E. G. Straus. On the distribution of integers with a given number of prime factors (à paraître).
- [Land] Landau, E. Handbuch der Lehre von der Verteilung der Primzahlen. Chelsea Publishing Company, 1953.
- [Lan] Langevin, M. Sur la fonction plus grand facteur premier. Séminaire Delange, Pisot, Poitou, Paris. 16e année 1974-1975, 29 p.
- [Mon] Montgomery, H. L. and R. C. Vaughan. On the large sieve. *Mathematika 20* (1973), 119-134.
- [Nel] Nelson, C., D. E. Penney and C. Pomerance. 714 and 715. J. Recreational Mathematics, vol. 7, No. 2, Spring 1974.
- [Nic] Nicolas, J. L. Répartition des nombres largement composés. Séminaire Delange, Pisot, Poitou. 19e année, 1977-1978, nº 41 et Acta Arithmetica 34 (1979), 379-390.
- [Pis] PISOT, C. and I. J. Schoenberg. Arithmetic problems concerning Cauchy's functional equation. *Illinois J. of Math. vol. 8, No. 1* (1964), 40-56.
- [Pra] Prachar, K. Primzahlverteilung. Springer Verlag 1957, Die Grundlehren der Mathematischen Wissenschaften, Band 91.
- [Ramac] RAMACHANDRA, K. A note on numbers with a large prime factor II. J. Indian Math. Soc. 34 (1970), 39-48.
- [Ram] HARDY, G. H. and S. RAMANUJAN. Asymptotic formulae for the distribution of integers of various types. *Proc. of the London Math. Soc. 2*, 16 (1917), 112-132. *Collected Papers of S. Ramanujan*, 245-261.
- [Rid] RIDOUT, D. Rational approximations to algebraic numbers. *Mathematika 4* (1957), 125-131.
- [Roth] ROTH, K. F. and G. SZEKERES. Some asymptotic formulae in the theory of partitions. Quart. J. Math. Oxford (2) 5 (1954), 241-259.
- [Sat] SATHE, L. G. On a problem of Hardy on the distribution of integers having a given number of prime factors I, II, III, IV. J. Indian Math. Soc. 17 (1953), 63-141 et 18 (1954), 27-81.
- [Sch] Schmidt, W. M. Approximation to algebraic numbers. Enseignement Mathématique 17 (1971), 187-253 et Monographies de l'Enseignement Mathématique nº 19, 1972.

- [Sel 1] Selberg, A. Note on a paper by L. G. Sathe. J. Indian Math. Soc. 18 (1954), 83-87.
- [Sel 2] On the normal density of primes in small intervals and the difference between consecutive primes. *Arch. Math. Naturvid.* 47 (1943), fasc. 6, 87-105.
- [Tij] TIJDEMAN, R. On the equation of Catalan. Acta Arith. 29 (1976), 197-209.
- [Tur] Turan, P. On a theorem of Hardy and Ramanujan. J. London Math. Soc. 9 (1934), 274-276.
- [Wri] HARDY, G. H. and E. M. WRIGHT. An introduction to the theory of numbers. Oxford, at the Clarendon Press, IVth edition, 1960.

(Reçu le 15 novembre 1979)

Paul Erdös

Akademia Matematikai Intezete Realtanoda u. 13-15 H-1053 Budapest, Hongrie

Jean-Louis Nicolas

Département de Mathématique U.E.R. des Sciences de Limoges 123, avenue Albert-Thomas F-87060 Limoges cédex, France