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SUR LA FONCTION:
NOMBRE DE FACTEURS PREMIERS DE N

par Paul Erdös et Jean-Louis Nicolas

Abstract. Let co (n) be the number of prime factors of n ; n is said co-largely

composite if m < n => œ (m) < co (n).

The quantity Qt (A) of such numbers < X verifies el^logX < Qx (X)

< ec2ViogThen we prove

card { n < x I co (n) > — 1 x1~c+o(1)
I log log x j

and if Q (n) is the total number of prime factors of n counted according to
log w

multiplicity, Q (n) + Q (n+ 1) < (1 + o (1)).
log 2

An integer n is defined œ-interesting if
œ (m) co (n)

m > n => <
m n

A short study of these numbers is given. We prove that there exists infinitely
many strangulation points (nk) for the function n — co (ri)

i.e. such that: m < nk=> m—co (m) < nh — co (nk)

and m > nk=> m —co (m) > nk — co (nfc)

Finally, we deduce from some formula of A. Selberg the exact order of
card {n < x ] co (n) > a log log x) for a > 1.

Introduction

Soit n pai ~-Pkk décomposition en facteurs premiers de n. On
définit co (ri) k et Q (n) — a± + oc2 + + ctk. Les fonctions co et Q sont
additives: une fonction/est additive si (m, n) 1 entraine/(mn) — /(m)
+ f (n). Hardy et Ramanujan (cf. [Har]) ont démontré en 1917 que la
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valeur moyenne de co (ri) était log log n. En 1934, P. Turan donnait une
démonstration simple de ce résultat, en prouvant: (cf. [Tur])

*
Y, (co (n) - log log x)2log log x)
n= 1

En 1939, M. Kac et P. Erdös démontraient (cf. [Kac]):

1

lim - card { n < x ; co (n) < log log x + t^Jlog log x }

1 r e-"2/2 du.
^Jln J -a

Ensuite, P. Erdös ([Erd 1]) et L. G. Sathe ([Sat]) s'intéressaient aux
entiers n < x tels que co (ri) soit de l'ordre de c log log x. A. Selberg

([Sel 1]) donnait la « formule de Selberg »

(1) Yj zC°(n) ZF (z) x (log x)z_1 + o (x (log x)Re (z~2))
n^x

où pour R > 0, le O est uniforme pour | z | <i£; F (z) est la fonction entière

r(z+î) p V V

Cette formule permet d'obtenir plus simplement les résultats de Sathe.

Dans la proposition 3, nous suivrons les idées de A. Selberg pour calculer

un équivalent de :

card { n < x | co (n) > a log log x } a > 1

La formule (1) a été étendue par H. Delange (cf. [Del 1] et [Del 2]).
Soit pk le klèmc nombre premier et posons Ak 2 • 3 •... pk. Ce nombre

Ak est le plus petit entier naturel n tel que co {n) k. On dit que n est

co-hautement composé si m < n => œ (m) < co (n). La suite des nombres
co-hautement composés est la suite Ak.

A l'aide du théorème des nombres premiers, on a : log Ak ~ pk ~ k log k\
on en déduit que pour tout n (cf. [Wri], ch. XVIII) :

log 72

(O (ri) < (l+o (1))
log log n

et que Qh (X) le nombre de nombres co-hautement composés <X vérifie:

log XQhW~•log log X
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On dit maintenant que n>2 est co-largement composé, si 1 < <
=> a» (m) < m(n).SiAk<«< Ak+1, n est co-largement composé si et

seulement si co (n) k. Soit Q, X)le nombre de nombres co-largement

composés <X. Nous démontrerons le théorème suivant:

Théorème 1. Il existe deux constantes 0 < telles que :

exp (c1 y log X) < Ql (X) < exp (c2 log

Nous démontrerons ensuite:

j Théorème 2. Soit c, 0 < c < 1. On a:

1 /c(x) card { n < x ; co(n) > ——1 x1_c+o(1)
[ log log x J

Entre les résultats obtenus par la formule de Selberg et le théorème 2,
j il y a un trou à boucher, pour estimer par exemple: card {n < % | œ (n)

> (log x)a}, 0 <oc< 1. Kolesnik et Straus (cf. [Kol]) ont donné une formule
J asymptotique assez compliquée qui fournit partiellement une solution à ce

problème.
Nous nous intéresserons ensuite aux valeurs extrêmes de/(n) + f (n+1),

pour quelques fonctions arithmétiques/ Nous démontrerons en particulier:

'I Théorème 3. On a, pour n -> + oo :

log n
Q(n) + ß(u + l)<i-J-^ (l+o(l)).

j Au paragraphe IV, nous disons qu'un nombre n est co-intéressant si:

co (m) co (n)
j m > n => <
j m n

j Cette définition caractérise une famille de nombres n qui ont beaucoup

j de facteurs premiers, en les comparant avec des nombres m plus grands
| que n (contrairement à la définition des nombres hautement composés).
J Nous donnons quelques propriétés de ces nombres.
'f*

'J Enfin, dans le dernier paragraphe, on dit qu'une fonction a un point
d'étranglement en n, si

m < n=>/(m) </(n) et m > n >/(n)
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Interprétation géométrique: Le graphe de/, contenu dans l'angle droit de

sommet (n, / (ri)) et de côté parallèle aux axes, s'étrangle en n. Nous
démontrerons :

Théorème 4. La fonction n -» n — co (ri) a une infinité de points d'étranglement.

Pour démontrer ce théorème, nous construirons une infinité de points n

tels qu'il existe juste avant n, une plage de nombres ayant beaucoup de

facteurs premiers et juste après une plage de nombres ayant peu de facteurs

premiers.

§ 1. Démonstration du théorème 1

Minoration : D'après le théorème de Selberg, (cf. [Sel 2] et [Nie]) il
existe entre (1 -2e) log X et (1 -s) log X un nombre x tel que:

71 (x + f(x)) - 71 (x) ~ et 71 (x) -7ï(x- f (x)) <v
7 log X log X

pour toute fonction / (x) croissante, vérifiant f (x) > x116 et telle que

f(x) décroisse et tende vers 0.
x

On choisit f (x) c x log x. Soit k tel que pk < x < pk+On considère

la famille de nombres :

n Ak^rq1 qr, 0 < r < s

où q j,..., qr sont des nombres premiers distincts choisis parmipk+19 pk+S'
De tels nombres vérifient œ (ri) k et il y en a 2S. De plus ils vérifient:

On choisit s de façon que pk+s < x + f (x) et pk_s > x - j (x) de telle

/(*) 0sorte que s ~ On a alors :

logx

" / 1 *+/<» 2 ilog - < slog —— < log x
Ak x-f(x) ~
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Si l'on choisit c < —— on aura donc Ak < n < Ak+ ± et ces nombres
V2

n seront co-largement composés et < X. On aura donc :

Q^X)>2°>exp ^ (1~^g2

Majoration : La majoration de Qx (X) est basée sur le lemme:

Lemme 1. SozY p1 2,p2 3, ...,pk le kîème nombre premier et soit

T (a) le nombre de solutions de l 'inéquation :

XlPi + X2V2 + ••• + XrPr + Xt E { 0, 1 }

Si C > n -, on a pour x assez grand :
V 3

log T(x) < C
i

log x

Démonstration. Le nombre de solutions de l'équation:

x±pt + x2p2 + + xrpr + n xt e { 0, 1}

est le nombre S (n) de partitions de n en sommants premiers et distincts. Le
nombre T(pc) £ S (n) peut être évalué par le théorème taubérien de

n^-x
Hardy et Ramanujan (cf. [Ram]) et Roth et Szekeres donnent la formule
[Roth] :

,„8S(„) l I*
3 V log nVV l°gn

et montrent que S n)est une fonction croissante de n. On a alors :

T(x) < x S [x].
Nous nous proposons de majorer le nombre d'éléments de l'ensemble:

Ek {n I co(n) Ak+X)

Soit neEk,n ql1... q*kk;lenombre n' qx q2 qk est sans facteur

carré et n' e Ek. De plus — <pk+1. On a donc:
n

card Ek<Pk+icardE'k
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avec: E'k {n | n sans facteur carré, œ (n) k, n < Ak+ ±}.
Maintenant si neE'k, n s'écrit:

n 2l-% 31-n-l pl~yipt\1 Pfc+r —

avec xt et yt valant 0 ou 1 et xt £ yt. Il vient:

1
n

1 Pk+l t Pk+r 1
Pk

log — x± log + + xr log + + y 1 log —
Ak Pk Pk Pk

Pk
+ + yr\og +

Pk-r+l

Le nombre d'éléments de E k est donc majoré par le nombre de solutions
de l'inéquation, en xt et yt valant 0 ou 1 :

1 Pk+l t Pk+r 1
Pk

x! log + + xr log + + y± log — +
Pk Pk Pk

+ J>r log
Pk

+ < log pk+1
Pk-r+l

On en déduit: card is< N± N2, avec Nt nombre de solutions de

l'inéquation (z 1, 2):

/k \ 1 Pk+1 Pk+r
(C) xx log + + xr log + <logpk+1

Pk Pk

(£2) Jiiog— + ••• + yrlog———+ ••• < logft+i.
Pk Pk-r+l

Soit R le plus grand nombre r tel que pk+r < 2pk. On coupe l'inéquation
£1 en deux:

Ç\:£ < logpt+1,
r= 1 Pk

0°

<fi : E xrlog ' <log
r — R+1 Pk

Le nombre de variables de Ci est en fait fini, et majoré par pkpk+1- Le

nombre de variables non nulles d'une solution de Ci est majoré par

—-— logpk+1. Le nombre N[ de solutions de Ci est majoré par:
log 2
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V (PkPk+ 1\ ^
1

r ïÏ5F2I08P*+1
Ni< £ < logPft+i

j ^ ûh108 Pk+1
J

ce qui assure:
Ni exp )2)

Il résulte de l'inégalité de Brun-Titchmarsh (cf. [Hal 1] et [Mon]):

7i (x) -7i (x-y) < 2y / log j;

valable pour 1 < y < x que, pour k > 2:

r r
Pk+r ~ Pk> log (pk+r -pk)>- log 2r

On en déduit que pour r < R, on a :

Pk+r Pk+r - Pk ^ r log 2r pr
log > > > c —

Pk Pk + r 4pk Pk

Toute solution de est donc solution de l'inéquation:

1

xip1 + x2p2 + + xrpr + < -PklogPk+i
c

et d'après le lemme précédent, on a:

log N\ O(Va)
et le nombre de solutions de £ t vérifie :

logJVj 0(jpk).
On démontre de même que le nombre N2 de solutions de £2 vérifie:

logJV2 0(vfo.
Ce qui entraine:

log (card E\) < log Nt + log N2 O

et:

card Ek<pk+1 (card Ék) exp (y/Jk))

Finalement, l'ensemble des nombres co-largement composés est
00

u Ek;la quantité g, (+) de tels nombres < X vérifie, en posant
4 1

Ako< X < Ako+i, ce qui entraine log ~ pki>:
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ko

Qi(x) < Z exp (O+pk))< k0expJpkj) < exp (c2 *Jlog X).
k= 1

Remarque. On peut conjecturer que log Qt (X) ~ n log Z. En

effet si l'on calcule la constante c2 dans la majoration ci-dessus, on trouve

_. /T
c2 - 2 ni -(1+e), le «2» venant de la formule de Brun-Titchmarsh.

Si l'on suppose les nombres premiers très bien répartis autour de pk, on

peut assimiler log à r
^ ^k+1

et le nombre d'éléments de E k serait
Pk Pk

le nombre de solutions de l'inéquation
00 00 00 00

Z rxr+ Z ryr<Pk avec Z E
r=l r=l i=l i=l

xu yt e {0, 1}. Le logarithme de ce nombre de solutions est équivalent à

2 /—
Pk-

Minoration : Posons k

2. Démonstration du théorème 2

c log X
+ 1 et Ak e6(pk) 2 • 3 • ...pk9

log log x_
où 0 (x) Yj P est fonction de Chebichev. Les multiples n de Ak

p^Xx

c log X
vérifient co(n) > Il y en a

log log x
qui sont inférieurs à x. On a (cf.

[Land], §57):

log Âk 6 (pk) pk+ O(pj.log2 pk) (log k +log log fe-l+o (1)).

Il vient en posant l log x, l2 log log x, /3 log log log x:

c l
k — +0(1)

h

log Ak cl +c(log c-1) (1 + (1))
et

log x \L (x)> jj-J > c exp ^ c (1 -log c) (1 + (1))
log log x
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Majoration : En développant par la formule multinomiale (cf. [Com],

t. 1, p. 38 ou [Hal 2], p. 147), on obtient:

l\k ^ 1

S z)>klPJ 2^Pil<...<Pih

On a donc, pour fceN, en désignant par £ l'ensemble des nombres sans

facteur carrés,

1 I i< Z
> <E( Z ff.

X n^Zx, neS n^Zx. neS tl k l \ p^Zx P/
co {ri) — k co {n) k

Evaluons maintenant le nombre d'entiers n < x dont les facteurs

premiers sont exactement pil9 pi2, pijt. On doit avoir

n p*i pa2 ...pak < x ; oc,- > 1
Fn 12 Flk ^ ' J

Ce qui entraîne

[log
x~]—-I ; <xj > 1

Or le nombre de solutions de cette inéquation est un nombre de combi-

' '+-S /flog* / log 2]\ 1 /
naisons avec repetition et vaut I

7 < — f

On a donc

k k \ \log 2

- YK—x ,â, ft!)2 V À, p) \1«S2,
co{n) =k

et

Z (i°g xßog iy
V- -V P JZ i <* Z

»2, jt* (j!)2
co (n) z^k

aJ ak 1
On utilise la majoration X < 77777 — ~ valable pourj^kOO(/c!) 1 — a/(fe +1)

« < (Ä:+l)2. On sait d'autre part (cf. [Land] §28) qu'il existe B tel que

Z _ < log log v + B, et on choisit:
P^zX P
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On obtient alors

x (l2 +B)k(Z/log 2)k
u*><- [1+0(i

et en remplaçant log k\ par k log k + O (k), on obtient

/,W<x'-exp (3c(l+.

ce qui achève la démonstration du théorème 2.

§ 3. Valeurs extrêmes de f(ri)+f (n +1)

1) Fonction o (ri) somme des diviseurs de n.

On remarque d'abord que, lorsque n -* + oo

(2) ff(n)=n fi {1 + - + + 2
f°||« \ P P

n(i+o(i)) n
p»ii» V p p

P ^ log n

autrement dit, les facteurs premiers supérieurs à log n ne modifient guère

g (ri). De tels facteurs, il y en a au plus log n / log log n et:
log«

y-1- / 1 1\ y-y
1 / 1 X l0gl0S"

n 1 H h...H—7 < n - T~T < 1 — —
P«||n \ P P / p*\\n 1-1 IP \ log n

p > log n p > log n

-i+ 0(1)
log log n

ce qui démontre (2).
3

Ensuite, on a pour tout n, a (ri) > n et pour n pair, g (n) > - /z. On a

5
donc pour tout n: g (ri) + g («+1) > - n. Inversement, pour k fixé, le

nombre n 4p2Pz pk + 1 est tel que n et n + 1 n'ont pas (à part 2)

de facteurs premiers inférieurs à (1 — a) log n et donc vérifie : g (n) + g (n +1)

^ n(l+ o(l)).
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On obtient les grandes valeurs de g (ri) + g (n+ 1) de la façon suivante:
S II résulte de (2) que

g (n) + g (n + 1) < n (1 + o (1)) (P± +P2)
| avec

n i i /r>
et n il/ •

p\n 1 I IP P\n+ 1 ^ lP
p ^ log n p ^ log n

Comme Pi et P2 sont supérieurs à 1, P1 + P2 <PX P2 + 1 et

pi.p2 < n r~7/—log log n 9

p log n I ~~1IP

où y est la constante d'Euler d'après la formule de Mertens (cf. [Wri]
§ 22.8). Cela donne pour tout n

g(ti) + g (n + 1) < n (1 + o (1)) ey log log n

Ce résultat est le meilleur possible puisque pour une infinité de n, on a

(cf. [Wri] §22.9):
g (n) ~ n ey log log n

Pour que la majoration P± + P2 < P± P2 + 1 soit bonne, il faut choisir
P1 ou P2 voisin de 1. L'examen des tables de max g (n) et de

n^rX

max (er (n) + g {n — 1))
n^x

montre que souvent un nombre N hautement abondant (c'est-à-dire vérifiant

n < N => g (n) < g (N)) vérifie: max (g (n) + G (n- 1)) g (N)
n^N+l

+ (7 (N- 1) OU (7 (N + l) + G (N).

2) Indicateur d'Euler <fi

On a une relation analogue à (2) :

</>(«) « n fi--) n(i+o(D) ri MV
p\n \ P/ p\n \ P/

P ^ log n

On démontre comme précédemment que pour tout n > 1, on a

3
(j) (n) + 4> (n + 1) < - n
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et que, pour une infinité de n

3
4> (ri) + (j) (n + 1) ~ - n

Pour les petites valeurs de $ (n) + $ (n+1), on a

<fi (n) + <i>(n+1) > n(1+ o(1))(Pi +P2) > 2« (l + o (1))

avec

p,- n « p2- n (i-i
P|/| \ P/ P|«+l V P

P ^ log n p ^ log n

et comme

on a

PiP2> n (i-i
P log n log log n

2e~y/2 n(l+o (1))
4>{n) + (j)(n + 1) >

yiogiogi

Cette inégalité est une égalité pour les n construits de la façon suivante :

Soit k e N*. On pose Pk fi (1 — 1/p). Soit k' le plus grand entier tel
p^pk

que Pk, > %/Pk ; on pose alors P1P2 — P/t'i ^ p^+i ...p^ on a

~= (l + o (1)) et l'on prend pour n la plus petite solution des

congruences: n 0 mod P; n + 1 0 mod S. Cette solution vérifie
R < rc < jRS exp (0 (Pfc)), ce qui montre que n tend vers l'infini avec k,

à (n) d>(R) à(n + l) d> (S)
et < et <

n R n-h 1 S

3) Fonction Q : Démonstration du théorème 3.

Proposition 1. Soit & > 0 et k > 0. On écrit n(n+ 1) Uk Vk où

Uk est le produit des facteurs premiers < k. Alors il existe n0 (k, s) tel que

pour n^n0, on ait Uk<^n1 + £.
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Le théorème 3 résulte de cette proposition puisque pour k > 2 :

Q(n) + Q(n + 1) ß(n(n + l)) &(Uk) + Q(Vk)

^ log Uk
+

log Vk

log 2 log k

log n 2 log n
< (1 +£) ~ r7 >

log 2 log /c
pour n > n0

Etant donné 77, il suffit donc de choisir £ assez petit et k assez grand pour

obtenir: Q (n) + Q (n + 1) <
log n

log 2
(1 + 77) pour n >n0.

La proposition 1 résulte de la proposition 2 (cf. [Rid] et [Sch], th 4F)?

comme nous l'a précisé M. Langevin:

Proposition 2 (Ridout). Soit 9 un nombre algébrique ^ 0. Soit

PlfP2, ...,PS, Qu Qi> •••> Qt des nombres premiers distincts, et ô > 0. Il
y a un nombre fini de nombres rationnels a/b avec :

a a'P\l Pafi ...Pass et b b'Q[l Qß22 ßf<

avec : oc1} a2 ocs, ßu ß2, ßt e N et a',b'e N* tels que

1

<
a'fe' ufr

: Démonstration de la proposition 1. Supposons que pour une infinité de n,
; on ait Uk > n1 + e. On peut partager les nombres premiers < k en deux

parties Px, P2, Ps et Ql9 Q2, ßt, de telle sorte qu'il y ait une infinité
de n tels que Uk > n

1 + 6 et tels que

p<ket p\n => pe{P

p<k et pI n + l=>2>e{ßl5

On écrit n n'PI1...Pxss et (n+l) n" gi1 ••• Qt' et l'on choisit 0 1,

\ô a/3. Il y aurait alors une infinité de nombres rationnels
n + l

solution

de

n + l
<

n'n" | (n (n + l))5

p puisque n' n!' — Vk <n1 8+ n £, ce qui contredirait la proposition 2.
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Les valeurs de n < 300 000 vérifiant

m < n => Q (m (m + 1)) < Q (n (n + 1))

sont (avec, entre parenthèses la valeur de Q (n (n+1))): 2 (2); 3 (3); 7 (4);
8(5); 15(6); 32(7); 63(9); 224(10); 255 (11); 512(13); 3968 (14);
4095 (17); 14436(18); 32768 (19); 65535 (20); 180224(22); 262143 (24).

On constate que les nombres 2n + {-1,0, +1}, lorsque n a de nombreux
facteurs premiers, figurent en bonne place dans cette table. Malheureusement,

la proposition 2 n'est pas effective, et il n'est pas possible de montrer
par cette méthode que la table en contient une infinité.

4) Fonction co.

Nous avons rappelé dans l'introduction que pour tout n, on a

los n
œ(n) < ,—: (1 +o(l))

log log n

— œ(n) + co (n+1)
Soit / lim —

log n I log log n

On al < / < 2 de façon évidente. On a probablement / 1, mais il semble

impossible de le démontrer.
La suite des nombres n tels que m < n => co [m (m F 1)) < co (n (n+ 1))

est: 1, 2, 5, 14, 65, 209, 714, 7314, 28570, 254540, etc On a en particulier
714 2 • 3 • 7 • 17 et 715 5 • 11 • 13. L'équation

n (n + 1) 2 • 3 • 5 • pk

a-t-elle des solutions >714? (cf. [Nel]).
Pour les petites valeurs de co (n) + co (n + 1), le résultat de Chen (pour

une infinité de nombres premiers p, on a Q (2p +1) < 2, cf. [Hal 1], chap 11)

montre que pour une infinité de n, on a

co(n) + co (n + 1) < Q (n) + Q (n + 1) < 4

L'ultime amélioration du résultat de Chen (0 (2/?+l) 1) permettrait
de remplacer 4 par 3 qui est le meilleur résultat possible pour Q.

Si l'on a co (n) + co (n+ 1) 2, n et n + 1 doivent être des puissances
de nombres premiers. L'un des deux étant pair, doit donc être une puissance
de 2. Cette situation se produira en particulier si n est un nombre premier
de Mersenne {n 2P - 1 avec p premier) ou si n + 1 est un nombre

premier de Fermât (n+ 1 =22fc+ 1). D'autre part l'équation 2n + 1 pa
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avec a > 2 qui est un cas particulier de l'équation de Catalan, n'admet

qu'un nombre fini de solutions (cf. [Tij]).
L'existence d'une infinité d'entiers n tels que co (ri) + co (n+ 1) 2 est

donc équivalente à l'existence d'une infinité de nombres premiers de

Mersenne ou de Fermât.

§4. Nombres co-intéressants

Définition. On dit que n est co-intéressant, si l'on a

co (m) co (n)
m > n => <

m n

Interprétation géométrique : pour m > n, le point (m, co (m)) est situé sous
la droite joignant l'origine à (n, co (n)).

Propriété 1 : Pour k > 1, le nombre Ak — 2 - 3 • pk est co-intéressant.
En effet: si co (m) < k on a bien: co (m)/m < co (Ak)/Ak pour m > Ak. Et
si co (m) k + A, A > 0, on a alors m > Ak 3À et:

co (m) k+A
_

CO(Ak)
(1 + fc)

(Ak) 1 + A m (Ak)

m Ak3AAk 3a < Ak'
Propriété 2 : Soit n vérifiant :

Ak < n < Ak+1^1 - Aet co(n)

alors n est co-intéressant.

Démonstration: Soit m > n, ou bien on a: m >Ak+1 et d'après la
propriété 1 :

co{m)
^ co(^+1)

^ kj co (n)
m Ak+i n

ou bien on a: n < m<Ak+1et cela entraine m m)/m < k/n co (ri)/n.
Propriété 3 : Pour une infinité de valeurs de k, il existe un nombre
co-intéressant, plus grand que Ak et ayant k 1 facteurs premiers.
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Démonstration : Soit k tel que

<3) ^ > 1 + r-, •

Pk + t k — 1

alors n 2 • 3 • ...pk_x (pk +1) est co-intéressant:

Remarquons d'abord que l'on a Ak<n <ri Ak et que pour
Pk

k > 2, d'après la propriété 2, n' est co-intéressant. Ensuite, co (ri) k — 1 ;

si m vérifie n < m < ri on a : co (m) < k — 1 ; si m vérifie ri < m, on a

co (m) co(ft') k k — 1

m ft' n' ft

d'après l'hypothèse.
On sait qu'il existe une infinité de nombres premiers tels que

Pk+i ~ Pk > 2 l°g Pk (cf. [PraL P- 157). Pour ces nombres on aura

Pk+i >l2 log - 1

Pk+ 1 + 1

et comme pk ~ k log k, cela entraine la relation (3).

Pk
Remarque 1. Si k vérifie pk+x ~ pk < il est facile de voir qu'il

k — 1

n'existe aucun nombre co-intéressant compris entre Ak et ri Ak
Pk

Cette situation se produit pour une infinité de k. On peut donc conjecturer

que pour une infinité de k, les nombres co-intéressants compris entre Ak

et Ak+1 vérifient co (ft) > k.

Remarque 2. Désignons par n" le plus petit entier suivant Ak et ayant

(k— 1) facteurs premiers. On a n" < n Ak(1-1 j Il est possible d'obte-
V Pk)

nir une meilleure majoration de ft" de la façon suivante: Le théorème de

Sylvester-Schur affirme que P (:u, r), le plus grand facteur premier du

produit (u+ 1) (u + r) est plus grand que r si u > r. (cf. [Lan]).
Pk-2

Considérons le produit: J"] (Pk-i Pk + t)- H doit avoir un facteur
t=i

premier q > pk-i> et s°it t tq tel que q divise pk-iPk + t. Alors le

nombre n 2 • 3 • ...pk-2 (Pk-iPk^iq) a k - 1 facteurs premiers et l'on
a ft <^Ak(l+pk-2/PkPk-i)' Le résultat de Ramachandra (cf. [Ramac]):
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x log U \
si r3/2 < u < rlog log r, on a: P (u, r) > r + avec X - 8 + ^ \

permet de montrer qu'il existe a > 0 tel que < A- ('+ w) 0n
peut prendre a 0, 000974.

Propriété 4. Soit n un nombre co-intéressant, «>(/:— 1) ^ alors

(o (n) > k. Cela entraine qu 'un nombre œ-intéressant compris entre Ak

et Ak+1 a plus de {Je— 1) facteurs premiers.

Démonstration. Soit /z >(£-1)^ vérifiant m (/z) < k - 1 ; on écrit

^n < Ak t, t entier.

On a donc t > k. Ce nombre n ne peut pas être co-intéressant puisque

co (n) k — 1 /c co (Akt)

n Ak (t — 1)

Conjecture: Peut-on remplacer n fi*(k-l) Ak par n > (1 +e{k)>)Ak avec
lim 8 (fc) 0?

fc-> + oo

Finalement, on voit que l'ensemble des nombres co-intéressants coïncide

presque avec l'ensemble des nombres co-largement composés: Les deux
ensembles ont une infinité de points communs, mais il existe une infinité
de nombres co-largement composés non co-intéressants (exemple :

n (.Pk+1 ~ 1) Ak par la propriété 2) et la propriété 3 fournit un exemple
de la situation inverse.

§ 5. Démonstration du théorème 4

Proposition 3. Posons Nk (x) card {n < x | co (n) > k). Pour a
fixé, a > 1, on a lorsque x -> + oo (avec les notations de l'introduction)

M- 1 F(a)ri+cictog-ïx{l+0(1/log log x))
iV [a log log x] W — r „ -i

a " ~
V 2n a1 (logx)1 ^^/loglogx

ou {>'} désigne la partie fractionnaire de y.
F (a)Pour 0 < a < 1, laformule ci-dessus est valable I en remplaçant

F(a)\ V a_1
par - jpour estimer card {n<x | œ(n<a log log x}.
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Démonstration (communiquée par H. Delange). Soit Px (z) £
n^x

Le théorème des résidus montre que:

Nk(x) — r —p*^ dzky ' 2in Jy(z-l) zk+1

où y est un cercle de centre 0 et de rayon r > 1. On applique la formule de

Selberg (1)

,r
1 f zi?(z)x(logx)z_1

W'w 2^j, (z-1) z"1
avec

D \ -
1 f 0(x(logx)Rez"2)

_
/x(logx)r~2\

l(x) 2/71J
„ (z-1) zt+1

Z
V (r-l)rk j

z F (z)
On pose G (z). G est holomorphe en z r et l'on écrit

z — 1

G (z) G (r) + (z — r) G' (r) + (z - r)2H (z, r)

avec if (r, r) ^ G" (r). Par la formule de Taylor, il existe A, 0 < A < 1

tel que if (z, r) ~ G" (Az + (1 — A)r).La fonction if est donc continue et

if (z, r) est bornée uniformément pour z e y, 1 < r% < r < r2. On pose

log log x /. On obtient

1 f x G (z)ez*

NM=2^Txl^-dZ+R^
1 / f xG(r)ezl x(z — r) ez(G' (r) \

— ^ dz + ;+1 -dz + x) + R2(x)
2l7clogx\Jy Z Jy Zfc+1 /

" to^GWL! +EhG'w ((TZijl "" ïï)+i,'w+1,'w'
k

On choisit r - de telle sorte que le coefficient de G' (r) s'annule, et

on a
1 f x

RoM ; rr; dz
2Î7Z log x Jy z

1

Si l'on pose z r ë0, on a | z - r |2 | ezl | 2r2 (1-cos 9) erlcose.
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On peut montrer que, lorsque a-+ + oo, on a jo"(l—cos 6)

O(eV.~3/2) (cf. par exemple, [Dieu], ch. IV). On en déduit que

x erl
R2(x)

O-\logx r"-1'2
et finalement

x lk x
Nk(x) ïoil G(r) ~kï+ ° (toil 7 J + O

(r_1)r*

On pose k — [a log log x],r= — <x,+ o( ], on a donc G (r)
I \log log x /

G (a) 1 + O - on évalue chacun des termes ci-dessus (en particulier

kl par la formule de Stirling: kl ~ kk e~k y/ Ink) et on obtient la
proposition 3.

Lorsque 0 < a < 1, on suit la même méthode, en intégrant sur un cercle
k

de rayon r - < 1.

Proposition 4. Soit (n0, A) 1, et a > 0. Alors on a, avec d{ri) £ 1,
d | n

(0 Z d(n)<Bf 1 + Log x\+
n= riQ mod A ^ \ ^ J

n ^ x

(,i) Ks^(i(i+HtV7n= riQ mod A \ o s \ \ /
n ^ x

(o ('0 ^ a log log x

Enparticulier cette dernière somme est O — f—-— |

V (log 108 2-1 J
H

A O (v/ x).

Démonstration. La formule (ii) est une conséquence immédiate de (i): Les
nombres pour lesquels eu («) > a log log x vérifient d (n) > 2°'<n> soit
d (n) > (log x)a log 2.

On a

Z à(n)< E E 2< E 2 E 1.

V7 «»»Ojnoc
d\n n^x

n n0 mod A n n0 mod A d ^ d ^ n n0 mod An^x n^x y n a ^ y/ x d^n
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Or les nombres n sur lesquels s'effectue cette dernière sommation vérifient
n n0 + y A 0 mod d. Si (A, d) 1, cette congruence a une solution
et une seule en y dans chaque intervalle de longueur d. Si (A, d) ^ 1, pour
que cette congruence ait une solution, on doit avoir (A, d) | n0, d'où
(A, n0) ^ 1 ; il n'y a donc pas de solutions. Finalement, il y a au plus une
solution dans chaque intervalle de longueur d et la somme est

<^2(s + 1)<2VÏ + T(1 + M-
Remarque. Dans le cas A 1, a 2, on trouve dans l'estimation (ii) le

même exposant pour log x que dans la proposition 3. Ceci est à rapprocher
du fait que (cf. [And])

Y d (n) ~ x log x
ft ^ x ; co (n) ~ 2 log log x

Par des méthodes plus compliquées, il est possible d'obtenir pour (ii)
une meilleure majoration.

Lemme 2. Soit M (atj) une matrice à m lignes et n colonnes à coefficients

dans un corps K. Soit 0 une partie de K et soit Lt le nombre

d'éléments de la /eme ligne de M qui sont dans 0. Alors il y a au moins
m

n — Y colonnes de M dont tous les éléments sont dans K — 0.
i= 1

Démonstration. Soit Cj le nombre d'éléments de la yeme colonne qui sont
dans 0. On a

n m n n

S Cj Z Lt et X 1 y 1 > n - y Cj-
J 1 i — 1 1 ^ 7 ^ ft 1^7£=» 7 1

Cj 0 Cj*0
m

«- I U-
i 1

Proposition 5. Supposons que pour n assez grand, il existe k > 0 et

j < n tel que

i) k < œ (n),

ii) co (n) <j,
iii) co (n-r) >j pour r 1,2, ...J - 1,

iv) co (n + s) <k pour s 1, 2, [2 log n].

Alors n est un point d'étranglement pour la fonction n i-> n — co (n).
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Démonstration. Soit m < n.

Ou bien on a m < n — j et d'après ii), m — co (m) < n — j < w — co (n),

ou bien on a n m + r avec 1 < r <j — 1 et iii) et ii) donnent

m — co (ni) < m — j < m — co (n) < n — co (n).

Soit maintenant m > n.

I Ou bien on a m > n + 2 log n et en remarquant que pour tout entier m,
S log m 3

^ jIon a co (m) < < - log m, on obtient, pour n assez grand :

':! log 2 2

1 3 3

m—co (ni) > in — ~ log m > n + 2 log n — - log (n + 2 log n)

> n > n co (n),

| par la croissance de la fonction x f-> x — - log x.

i Ou bien on a m < « + [2 log «] et iv) donne alors

j co (m) < k < co (n)

| ce qui entraîne
j

I m — co (m) > n—co (ri)

| Démonstration du théorème 4. La méthode suivante est celle de [Erd 2].
J Pour assurer les hypothèses i) et iii) de la proposition 5, on va demander à

ïj n d'être solution du système de congruences

n 0

n 1

mod B0

mod Bx

n j — 1 mod

où B0 est un produit de k nombres premiers et Bl9 Bj_ 1 des produits
de j nombres premiers. On pose

a n Bt.
i 0
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D'après le théorème chinois, les solutions de ce système de congruences
sont de la forme

h n0 + y A avec 0 < rc0 < ^4 et y e N.

On se donne x assez grand. On choisit

k [3 log log x], j [6 log log x].

On prend les facteurs premiers de B0) Bj_ l distincts et compris entre
3 log x et 4 log x, ce qui est possible d'après le théorème des nombres

premiers. On a donc:

log A < 6 (log log x)2 log (4 log x) O (log log x)3

Maintenant, pour 1 < s < 2 log x, grâce au choix des facteurs premiers
de A on a, pour la solution n0 des congruences

(n0+s, A) 1

et (n0,A) B0

x
Considérons le tableau (as A 0 < s < 2 log x, 0<y< — — 1 défini parA

as,y co(n0+s+yA) si s#0,
>o +yA\ nCD SI 5=0.

Bo

D'après la proposition 4, la 5ieme ligne de ce tableau contient au plus

x 1

O
A (log x)3 log 2 1

x
termes supérieures à 3 log log x. D'après le lemme 2, il y a — (1 + o (1))

jCJL

colonnes y pour lesquelles

œ (n0 + 5 +y A) < 3 log log x pour s 1,..., 2 [log x]
œ (n0 +y A) < 6 log log x pour 5=0.

Pour une de ces valeurs de y, n n0 + y A vérifie les 4 hypothèses de la

proposition 5 et est donc un point d'étranglement de la fonction

n\-> n — œ (ri).
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On peut raisonnablement conjecturer que pour e assez petit, la fonction

n — d (n)s a une infinité de points d'étranglement, mais il semble peu
vraisemblable que ce soit encore vrai pour 8=1. D'après le théorème

des nombres premiers, on peut voir que pour n 2 • 3 • pk9

n - (co (ri) log n)œ(n) est négatif, et donc cette fonction n'a qu'un nombre

fini de points d'étranglement. On ne peut pas démontrer que n — co (/2)co(n)

n'a pas de points d'étranglement: La raison en est qu'il n'y a pas de résultats

non triviaux pour la question suivante: Quel est le plus petit tk tel que
co(n + t^)^k. On a évidemment < 2 • 3 • ...et malheureusement,

nous ne pouvons améliorer ce résultat. C'est une question beaucoup plus

importante que l'étude de n — co (n)oj(n\

Il n'est pas difficile de montrer que si n est un point d'étranglement pour
la fonction n — œ (ri)1w(n)? alors co (ri) < (logn)1/2 + E. Il semble vraisemblable

que pour n > n0, il existe m > n avec m — co (m)co(m) < n et même,

m — oo (rn)co(m) < n — e(logn)1 £? ce qui montrerait que le nombre de

points d'étranglement est fini. Peut-être, pour tout n > n0, existe-t-il un
m > n tel que m — d (m) < n — 2. On a besoin de n — 2, parce que

min m — d (m) < n — 2, mais on ne sait rien à ce sujet.
m n î,n + 2

Enfin, il est facile de voir que toute fonction additive qui possède une
infinité de points d'étranglement est croissante, et donc (cf. [Erd 3] et

[Pis]) proportionnelle au logarithme: La démonstration suivante a été

proposée par D. Bernardi et W. Narkiewicz,
Soit / additive ayant une suite infinie nx < n2 < nk < de points

d'étranglement et a < b. On peut trouver, pour nk assez grand, dans l'inter-

tl nk nk \valle —t — un nombre c, premier à a b ; on aura alors

c a < nk < cb

ce qui entraîne

/(c) +/(a) <f(nk) </(c) +f(b)
etf (a) < f(b).
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