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EXAMPLE 4: IMPLICIT FUNCTION THEOREM. Consider an open subset
U = C? containing (z,, wo) € C* and a holomorphic function f: U — C.
The classical existence and uniqueness theorem concerning the implicit
function equation f (z, w) = 0 reads as follows. Assume that f (z,, wo) = 0
and f',, (zo, Wo) # 0. For some deR, § > 0, there is a holomorphic
function g : B; (z,) = C such that g (zo) = wy, (2,9 (2)) € Uand f (2,9 (2)]
= 0 if z € By (z,). Moreover, if for some such é, we have two holomorphic
functions g, : B; (z,) > C such that g;(zo) = w,, (z,g;(2))e U and
flz,9;(2)] = 0 if zeB;(z,), where j = 1,2, then g;(z)= g, (2) for
z € By (z,). By keeping z,, w, fixed, we would like to have a terminology
allowing us to assert that the solution w = g (z) passing through (z,, wy)
of f(z, w) = 0 varies holomorphically with f (z, w). This is done in elemen-
tary courses as follows. Consider an open subset ¥ = C* containing
(2o, Wo, 4o) € C* and a holomorphic function f: ¥V — C. The classical
theorem concerning the implicit function equation f (z, w, 1) = 0 depending
on the parameter A reads as follows. Assume that f(zo, wy, 4) = 0 and
[ (zo, wo, A) # 01if (24, wo, A) € V. For some § € R, 6 > 0, thereis a holo-
morphic function g : B;(z,) X Bs (1,) = C such that g (zqo, ) = wy if
AeBs(ho), (z,9(z, 1), A)eV and fz,9(z 4,4 =0 if ze B;(zy),
J € Bs (1). Likewise if we have several parameters. We then say that, if an
implicit function equation depends holomorphically on the variable, the
unknown and the parameters, then its solution through a fixed point
depends holomorphically on the variable and the parameters. See Example 4
of Section 3 below.

3. HOLOMORPHIC MAPPINGS

The topological vector spaces language is becoming a routine method
- of expression in Mathematics and certain of its applications, say to Math-
- ematical Physics, Engineering and Economics. Our standard references
~are [6], [13], [15], [17], [31] and [32].

; Let us recall that a complex topological vector space E is a vector space
- which at the same time is a topological space, such that the vector space
- operations (x,y)eE X E+>x + yeE and (4, x)eC X E+> AxeE are
- continuous. A seminorm on a complex vector space E is a function
- i B> Ry suchthato (xy +x;) <o (xy) + a(x)anda (Ax) = | 2] - o (x)
. Xy, X, x€ E, A€ C. We denote by CS (E) the set of all continuous semi-
norms on a topological vector space E. If I' is a nonvoid set of seminorms
on a vector space E, we define the associated topology ., on E by saying
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that X < E is open if, whenever x € X, there are oy, ..., 0, I, ¢ > 0 for
which 1€ FE, o;(t—x) < ¢ for i = 1, ..., n imply that e X. Then E is a
topological vector space if endowed with #.. Which topological vector
spaces do we get this way from arbitrary E and I'? Well, X < E is convex
if, whenever x,, x; € X, AeR, 0 <A <1, then (1-A)x, + Ax;eX. A
topological vector space E is locally convex if the convex neighborhoods of
every x € E form a basis of neighborhoods of x; it suffices to check that at
one point, say the origin. If I" is a nonvoid set of seminorms on a vector
space E, then E endowed with £ is locally convex and I' = CS (E). Con-
versely, if E is a locally convex space, its topology £ is associated to
I' = CS(E), that is & = £ . Hence locally convex spaces are just topo-
logical vector spaces whose topologies are defined by nonvoid sets of semi-
norms. There are basic results, such as the Hahn-Banach theorem, that are
valid for locally convex spaces, but not necessarily for topological vector
spaces. Fortunately, most topological vector spaces that we encounter are
locally convex and have their topologies associated to sets I' at sight. It is
true that there are topological vector spaces that are not locally convex but
are used, say in probability theory, typically L? (1) of a measure u with
0<p<l

Fix the complex locally convex spaces E, F.

If m=1,2,.., let Z,("E; F) be the vector space of all m-linear
mappings of the cartesian power E™ to F; and £, ("E; F) be the vector
subspace of all symmetric such mappings. Here (and in the sequel) the
index “a” stands for “algebraic”, continuity not being assumed. Let
¥ ("E; F) and &, ("E; F) be the vector subspaces of those 4 € &, ("E; F)
and 4 e %, ("E; F) that are continuous, respectively. If m = 0, we set
£,CE;F) = £,CE F) = 2(°E; F) = 4,(°E; F) = F.

Letting 4 € &, ("E; F), x € E, write Ax™ = A(x,..,x)ifm =1,2,..,;
and Ax° = A if m = 0. To every such 4, associate the mapping 4 : E+— F
defined by A4 (x) = Ax™ if xe E. Call 4 the m-homogeneous polynomial
associated to 4. Denote by £, ("E; F) the vector space of all m-homo-
geneous polynomials of E to F associated to all 4 e %, ("E; F); and by
P ("E; F) the vector subspace of all continuous such polynomials. The
linear mappings A€ L, ("E; )+~ Ae ?,("E;F) and Ae % ("E;F)
> Ae P ("E; F) are surjective. Moreover, the linear mappings
Ae £, ("E; F) v+~ Ae P, ("E;F) and Ae ¥ ,("E;F)+ Ae P ("E; F)
are bijective.

Let U < E be open and nonvoid. We say that f: U — F is holomorphic
if, corresponding to every ¢ € U, there are Taylor coefficients 4,, € £, ("E; F)
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for m = 0, 1, ... such that, for every fe CS(F ), there is a neighborhood
V of ¢ in U for which
lim B[f () — Y A(x—8] =0

k=0

m-—co

uniformly for x e V. Let o (U; F) be the vector space of all holomorphic
mappings of U to F. If F is a normed space, the definition that f is holo-
morphic means that, corresponding to every ¢ € U, there are 4,, € & ("E; F)
form = 0, 1, ... such that

F0) = % AnG—".

convergence being uniform for x in some neighborhood ¥V of £ in U. In
general, the definition must be given as we phrased it.

If F is a Hausdorff space, the sequence (4,,) of Taylor coefficients of
fes# (U; F) at £ e U is unique. Then

IO WHEEEY

is called the Taylor series of fat £, where x € U. We define the m-differentials
of fat & by
d"f (&) = ml4,,, d"f(§) = mld,

considered as elements of %, ("E;F) and p ("E; F) respectively, for
m = 0,1, .... The Taylor series of f at £ becomes

1
f () = A (@) (=)

Msims
|~ ¥

" f (&) (x—8).

~S

!

3
1l
o
3

EXAMPLE 1: SPECTRAL THEORY. If Fis a complex normed space and
fes# (C; F) is bounded, the vector valued Liouville theorem asserts
that fis a constant; this is proved exactly in the same way as when F' = C,
that is, as in the classical Liouville theorem. This simple result was used in
the proof of the Gelfand-Mazur theorem as given in Example 1 of Section 2.
More generally, if E, F are complex locally convex spaces, F is a Hausdorff
space, and f e o (E; F) is bounded, that is /' (F) is bounded in F, then fis
a constant; this is proved by a simple reduction to the case when £ = C
' and Fis a normed space. We recall that ¥ < Fis bounded in F if, for every
~neighborhood V of 0 in F, there is A € C such that Y < AV.
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EXAMPLE 2: OPERATIONAL CALCULUS. In the notation and termin-
ology of Example 2 of Section 2, once fe s (U; C) is fixed, the mapping
ZeAY - f(Z)e A is indeed holomorphic. All this becomes a more
venturous enterprise in the more general case when, in the notation of
Example 2 of Section 2, E is a locally convex space, or A4 is a locally convex
algebra.

In order to reconsider Examples 3 and 4 of Section 2, we need to de-
scribe an important example of locally convex spaces, namely 5 (K; C),
the space of germs of complex valued functions that are holomorphic
around a fixed nonvoid compact subset K of C". This example became a
routine in Complex Analysis, Functional Analysis and applications. How-
ever, what happened historically may be described as follows. Fantappié
and others studied a lot the so-called analytic functionals, that is functions
whose variable is an analytic (holomorphic) functions. Yet Fantappi¢ did
not know how to introduce and use a natural topology on the spaces of
holomorphic functions that he considered. Accordingly, he had to bypass
this handicap to a certain extent. When Laurent Schwartz developed the
theory of distributions, he naturally considered inductive (direct) limits.
The most basic example of them in his theory is the following one. Once a
nonvoid open subset U < R" is fixed, the vector space Z (U; C) of all
infinitely differentiable complex valued functions on U with compact
supports contained in U is to be looked upon as an inductive limit of the
vector space & (U; C) of all such functions with supports contained in K,
for any compact subset K < U. Next Dieudonné and Schwartz wrote an
article on basic aspects of inductive limits of locally convex spaces. This
led Dias, Grothendieck and Kothe simultaneously to define the natural
topology on # (K; C) as follows.

Fix then a nonvoid compact subset K < C" and consider the union

H[K;C]l = u #(U;C)
U>osK
where U varies over all open subsets of C" containing K. Define an equiv-
alence relation modulo K on that union by considering f'; : U; -» C (i=1, 2)
as equivalent if U, = C" is open containing K and f; e s (U;; C), the
set of points x € U; n U, satisfying f (x;) = f(x,) being a neighborhood
of K in C". Each equivalence class of # [K; C] modulo such an equivalence
relation is called a germ of holomorphic function around K. If f € 5# [K; C],

we denote by [, or simply f, its equivalence class, that is, its germ
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modulo K. Call # (K; C) the quotient space of # [K; C] modulo that
equivalence relation. Then & (K; C) is a vector space in a unique way so

that every mapping f € # (U; C)+> f x € # (K; C) is linear, where U = C”
is open containing K. Denote by #5(U; C) the Banach space of all
fe s (U; C) that are bounded on U, where #'p (U; C) is endowed with
the supremum norm. The natural topology on # (K; C) is defined by the
following inductive limit procedure: it is the largest locally convex topology

on # (K; C) such that each linear mapping f € #'5 (U; C) > f € # (K; C)
is continuous, for every open subset U = C" containing K. We could also
use an alternative form of this definition. The natural topology used on
# (U; C) is the so-called compact-open topology. Then the same natural
topology on # (K; C) may be defined by the following inductive limit
procedure: it is the largest locally convex topology on # (K; C) such that

each linear mapping f € # (U; C) — f~ x € # (K; C) is continuous, for every
open subset U = C" containing K. If K = {z} is reduced to a point
z = (z4, ..., z,) € C", we write # (z; C) = H# (24, ..., 2,; C) for # ({z}; C).

EXAMPLE 3: ORDINARY DIFFERENTIAL EQUATIONS. Let wus resume
notation and terminology of Example 3 of Section 2. The classical existence
and uniqueness theorem for ordinary differential equations allows us to

associate to the germ ]N”e H (z9, Wo; C) of fes# (U; C) at (zy, wy) the
germ gN € H (z4; C) of g € H# (B (z0); C) at z,. It can be proved that the

mapping f € # (zy, wo; C) —g € # (z,; C) is holomorphic. It is really in
this simple way that we should state that the solution passing through
(zo; Wo) depends holomorphically on the differential equation. We see now
how much exposition is needed to express that result in such a simple form.
That is why we bypass such a language problem and state the result in the

weaker classical form involving parameters; as a matter of fact, this is
enough for certain purposes.

EXAMPLE 4: IMPLICIT FUNCTION THEOREM. Let us resume notation
and terminology of Example 4 of Section 2. Let & be the vector subspace

of # (zy, wo; C) formed by all germs .;N’e H (29, wo; C) of fes# (U; C)
at (zg, wo) satisfying f(zo, wy) = 0. Let % be the nonvoid open subset

L’Enseignement mathém., t. XXVI, fasc. 3-4. 18
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of & formed by those germs f which, in addition to the above conditions,
satisfy £, (zo, wo) # 0. The classical existence and uniqueness theorem for

implicit function equations allows us to associate to the germ }e AU of
feH (U; C) at (zy, wy) satisfying f(zy, wo) = 0, f', (2o, W) # 0, the

germ ; € A (29, C) of g e # (B;(z,); C) at z,. It can be proved that the

mapping f € U +— ; € H (z,; C) is holomorphic. We may repeat here some
comments which are analogous to those made at the end of the above
Example 3.

4. CONCLUDING REMARKS

This article was written to attract prospective users in applications of
holomorphy in infinite dimensions.

I have tried to illustrate through four very simple, classical examples,
how the concept of holomorphic mappings in infinite dimensions comes up
naturally in Analysis. The difference between Examples 1 and 2 on one side,
and Examples 3 and 4 on the other side is striking: The first two examples
seem very straightforward, while the last two examples look more sophis-
ticated. However, sophistication in Mathematics is a matter of lack of
habit; I personally am by now so used to dealing with germs of holomorphic
functions that I no longer think of the last two examples as being sophis-
ticated at all. Moreover, dealing long enough with any mathematical con-
cept, particularly in applying it, leads to the development of a sort of
intuition in that respect.

In 1963, I had my first opportunity of visiting Warsaw, and of talking
leisurely to Mazur. I then played a little bit the role of a newspaper reporter
and asked him if he, Banach and other members of the Polish group that
developed Banach space theory, had specific applications in mind. Mazur
answered, without any surprise to me as a mathematician, that the Polish
group was guided by a conscience of the importance of Banach spaces in
Mathematics proper. We witness nowadays how Banach spaces methods
and results spread out in Mathematics and its applications. More accurately,
Banach spaces have even been superseded by locally convex spaces for many
of such goals. Psychologically, it is interesting to notice that the concept of a
Banach space was also emphasized by Norbert Wiener; however Banach
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