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WHY HOLOMORPHY IN INFINITE DIMENSIONS?

by Leopoldo Nachbin

Ein Mathematiker, der nicht etwas Poet ist, wird nie
ein vollkommener Mathematiker

Karl Weierstrass

1. Introduction

The study of holomorphic functions in infinite dimensions is an objective
as old in Mathematics as Functional Analysis, and as the idea of systems

with an infinite number of degrees of freedom in Mechanics. It dates back

to the end of the last century. The simple language of normed spaces and of
topological vector spaces became a routine, as a suitable form of linear
algebra in infinite dimensions to be used in Analysis, Geometry and
applications. Thereafter, the theory of holomorphic mappings in infinite dimensions

was properly developed as a confluence of ideas and methods
originating mostly from several complex variables, manifold theory and
Functional Analysis. Independently of that, users of sophisticated
mathematical methods in applications have employed and furthered holomorphy
in infinite dimensions, in fields such as Mathematical Physics and Electrical
Engineering. The present expository article was written by aiming at the
non-specialists, more exactly, at the non-mathematicians. We will use
Weierstrass' definition as a model for the general case.

2. Some classical motivations

Example 1 : Spectral theory. If Z: E -» E is a linear operator on
the complex vector spaced of finite dimension« 1,2, the homogeneous
linear equation Z (x) Xx has at least some solution x e is, x # 0 for at
least some XeC. Equivalently, there is at least some X e C such that XI - Z
is not invertible in the algebra (E; E) of all linear operators on E, where I
is the identity mapping of E; the set of all such X has at most n elements.
This fact is proved by noticing that XI - Z is not invertible if and only if,
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by taking determinants, the algebraic equation det (XI— Z) 0 is satisfied

by X. Now, we notice that det (XI- Z) is a polynomial in X whose leading
term is A", hence of degree n. By the so-called fundamental theorem of
Algebra, that algebraic equation has at least a solution X e C; it is clear
that it has at most n such solutions. This result is one of the starting points
of Spectral Theory. A more general form of it is the following one. Let now
Z : E -» E be a continuous linear operator on the complex Banach space
E # 0. There is at least some X e C such that XI — Z is not invertible in the
Banach algebra (E; E) of all continuous linear operators on E, where I
is the identity mapping of E. This result is no longer proved as in the finite
dimensional situation, as we no longer have analogues of determinant
theory and of the fundamental theorem of Algebra, as formerly. Since there
is no difference in terms of difficulty in the exposition, we will explain this
aspect in the more general language of Banach algebras. Let then A be a

complex Banach algebra with unit 7^0; thus A is a Banach space and at
the same time an algebra for which || XY || < || X || • || Y || if X, Y e A,
and || 11| 1. [For instance, if E =£ 0 is a complex Banach space, then
££ (E; E) is a complex Banach algebra with unit I # 0 in a natural way.]
The spectrum spt (Z) of Z e A is the set of all X e C such that XI - Z is

not invertible in A. The Gelfand-Mazur theorem states that spt (Z) is

always nonvoid; it is clear that it is compact in C. How can we prove such

a result without analogues of determinant theory and of a fundamental
theorem of Algebra? Surprisingly enough at first sight, this is accomplished
through a seemingly isolated result in Complex Analysis, known as the
Liouville theorem: if an entire complex valued function of a complex
variable is bounded, then it must be a constant. As a matter of fact, it is

immediately pointed out in Complex Analysis courses that a possible
application of Liouville theorem is to a proof of the fundamental theorem
of Algebra. Coming back to the Gelfand-Mazur theorem, its short but
smart proof goes as follows. Assume that Z has a void spectrum. The vector
valued function X e C \-^ (XI—Z)'1 e A of a complex variable is entire,
and it tends to zero at infinity. Thus the function in question must be a

constant, by Liouville theorem, once it is entire and bounded; actually it
must be identically zero as it is a constant and tends to zero at infinity.
However, this is an absurdity as no inverse in A can be zero. The above

proof calls for the need of a vector valued Liouville theorem of a complex
variable, which not only is true but may be proved as easily as the scalar

valued one. It is true that we may bypass the vector valued Liouville theorem

by arguing as follows. For every continuous linear form cp on A, the scalar
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valued function A e C i cp[{XI-Z)']eC of a complex variable is

entire, and it tends to zero at infinity. By the classical Liouville theorem,

this function is identically zero for every such (p. By the Hahn-Banach

theorem, if XeAsatisfies<p (X) 0 for every such <p, then 0. Thus

{XI—Z)"1 0 for all X e C. However, this is an absurdity as no inverse

in A can be zero. This equally nice proof of the Gelfand-Mazur theorem,

via the classical Liouville theorem plus (the unnecessary use of) the Hahn-

Banach theorem is like a good dessert whose recipe the cook does not tell

us!... See Example 1 in Section 3 below.

Example 2: Operational calculus. As in Example 1, we could

consider the Banach algebra {E;E)associatedto a complex Banach

space E#0. Since there is no difference in terms of difficulty in the

exposition, we will explain this aspect in the more general language of Banach

algebras. Let then A be as in Example 1. If/: C C is entire, we may
consider its Taylor series

00

/(z) Z am{z-Om
m — 0

about Ç eC, for any zeC, where am /(m) (Ç)lm for m e N. It is natural

to define
00

/ (Z) Z a-£/)"m 0

for any Z e A. It is easily checked that this definition makes sense, once
I am 11/m 0 as m -> oo ; and that/ (Z) e A does not depend on the choice

of Since the function z e C \->f (z) e C is entire, we would like to have a

terminology allowing us to assert that the mapping Z e A f (Z) e A is

entire too. For a change, consider now the nonvoid open subset A* a A
formed by the invertible elements of A, and the nonvoid open subset

C* c C formed by the nonzero elements of C. Since the function

zeC^l/zeC is holomorphic, we would like to have a terminology
allowing us to assert that the mapping Z e A* Z"1 g A is holomorphic
too. More generally, let J*? (U; C) denote the algebra of all holomorphic
functions/:£/-> C, where U a C is open nonvoid. If/e /(U; C) and J
is an oriented, rectifiable Jordan contour (formed by an exterior,
counterclockwise oriented, rectifiable Jordan curve and a finite number of interior,
mutually exterior, clockwise oriented, rectifiable Jordan curves) fitted in
U, we may consider the Cauchy integral
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/ (z)
2̂ni XeJ Â ~~ Z

for any z e U, provided z is surrounded by J. It is natural to define

/(z) I f{X){?d-zy1dx
I AeJ2ni

for any Z e A such that spt (Z) c= U, provided spt (Z) is surrounded
by J. It is easily checked that / (Z) e A does not depend on the choice of
such /. The two previous cases are subsumed by the present one. Consider

now the nonvoid open subset Au of A formed by all Z e A such that
spt (Z) c: U. Since the function z e U\->f (z)e C is holomorphic, we
would like to have a terminology allowing us to assert that the mapping
Z e Au\-> f (Z) e A is holomorphic too. This is indeed the case with the
natural definition of holomorphic mappings between normed spaces. See

Example 2 in Section 3 below.

Example 3: Ordinary differential equations. Consider an open
subset U a C2 containing (z0, w0) e C2 and a holomorphic function

/ : U C. The classical existence and uniqueness theorem concerning the

ordinary differential equation w' f (z, w) reads as follows. If ô e R,
<5 > 0, let Bô (z0) be the set of all z e C satisfying | z — z0 | < ô. For some
such <5, there is a holomorphic function g : Bô (z0) -> C such that g (z0)

w0, (z, g (z)) e U and g' (z) / [z, g (z)] if z e Bô (z0). Moreover, if for
some such ô we have two holomorphic functions gj : Bô (z0) C such

that Qj (z0) wo, (z, gj (z)) e U and g'j (z) / [z, gj (z)] if z e (z0),
where j 1,2, then g± (z) g2 (z) for z e Bô (z). By keeping z0, w0 fixed,
we would like to have a terminology allowing us to assert that the solution
w g (z) passing through (z0, w0) of w' f (z, w) varies holomorphically
with / (z, w). This is done in elementary courses as follows. Consider an

open subset V c= C3 containing (z0, w0, A0) e C3 and a holomorphic
function / : V - C. The classical theorem concerning the ordinary
differential equation w' f (z, w, 2) depending on the parameter 2 reads as

follows. For some ö e R, ô >0, there is a holomorphic function g : Bô (z0)
x Bô (20) -> C such that g (z0, 2) w0 if 2 e Bô (20), (z, gf (z, 2), 2) e F
and g'z (z, 2) / [z, # (z, 2), 2] if z e Bô (z0), 2e^ (20). Likewise if we
have several parameters. We then say that, if an ordinary differential
equation depends holomorphically on the variable, the unknown and the

parameters, then its solution through a fixed point depends holomorphically
on the variable and the parameters. See Example 3 in Section 3 below.
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Example 4: Implicit function theorem. Consider an open subset

U c C2 containing (z0, w0) e C2 and a holomorphic function / : U -» C.

The classical existence and uniqueness theorem concerning the implicit
function equation/ (z, w) — 0 reads as follows. Assume that/ (z0, w0) 0

and fw (z0, w0) A 0. For some (5 g R, <5 > 0, there is a holomorphic
function g : Bô (z0) - C such that g (z0) w0, (z, g (z)) e U and/ [z, g (z)]

0 if z g (z0). Moreover, if for some such <5, we have two holomorphic
functions gs : Bô (z0) -> C such that gj(z0) w0, {z,gj{z))eU and

f [z, (z)] 0 if z e Bô (z0), where j 1,2, then gi00 #2 00 for
ze55 (z0). By keeping z0, w0 fixed, we would like to have a terminology
allowing us to assert that the solution w # (z) passing through (z0, w0)

of/ (z, w) 0 varies holomorphically with / (z, w). This is done in elementary

courses as follows. Consider an open subset V c C3 containing
(z0, w0, 20) g C3 and a holomorphic function / : V C. The classical

theorem concerning the implicit function equation/ (z, w, Ä) 0 depending
on the parameter X reads as follows. Assume that / (z0, >v0, X) 0 and

f'w (z0, w0, X) ^ 0 if (z0, w0, 2) g V. For some ô g R, ô >0, there is a

holomorphic function g : Bô (z0) x ^ (20) -> C such that g (z0, X) w0 if
À e Bô(A0), (z, g (z, X), X)eV and / [z, gr (z, 1] 0 if z e Bö (z0),

Xe BÔ(X0). Likewise if we have several parameters. We then say that, if an
implicit function equation depends holomorphically on the variable, the
unknown and the parameters, then its solution through a fixed point
depends holomorphically on the variable and the parameters. See Example 4

of Section 3 below.

3. Holomorphic mappings

The topological vector spaces language is becoming a routine method
of expression in Mathematics and certain of its applications, say to
Mathematical Physics, Engineering and Economics. Our standard references
are [6], [13], [15], [17], [31] and [32].

Let us recall that a complex topological vector space E is a vector space
which at the same time is a topological space, such that the vector space
operations (x,y)eE x Eh->x + y eE and (2, x) g C x E^ XxeE are
continuous. A seminorm on a complex vector space E is a function
(x:E\-^~R+ such that a (x1+x2) < a (xx) + a (x2) and oc (2x) « | 2 | • a (x)
x i •> x2, x e E, Xe C. We denote by CS (E) the set of all continuous semi-
norms on a topological vector space E. If f is a nonvoid set of seminorms
on a vector space E, we define the associated topology Jr on E by saying


	2. Some classical motivations

