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c;=c¢; (K, L,A,A4,d)>0,i=1,2, e¢t N,= N,(K,L, A, A',d) telles
que

(3) slog(s+1) +1logP > c, loglog N
et
(4) P >c,loglog N

pour tout xeZj avec N ((xy,..,x,)) <d et N= max |Np,(x)]|

l1=im
>N,, ot 5= w(F(x) et P=P(F(x).
Le Théoréme 2 généralise certains récents résultats de Kotov [10] et
Gyory [4].

3. DEMONSTRATIONS

La démonstration du Théoréme 1 sera basée sur le théoréme ci-dessous.
Avec les notations du paragraphe précédent, on a le

TaEOREME A. Soit M = {u;, ..., i} < Zg un Z;-module. Supposons
Uiy .o Uy L-linéairement indépendants, connexes par rapport a K/L et
max [ pu; | <A'. Si yeM et

J

NK/L (y) = /))nil . TCis

avec des entiers z; > 0, alors y = n/1..7sy’, o uy,..,u; >0 sont
des entiers, y'e Ly,

< T

et
T = exp {¢3 Ry hy P?(log P)* Rglog® (RGhg) (Rg+hglog P)*T*2

. (log 2) (Rg+hg log P+log (A'b)) }
avec
cy = (25 (r+sf +3) g)22r+ 13sf+2rsf+44

Ce théoréme est une conséquence ') du théoréme 2 du travail [6] (voir
encore la majoration (45) de [4]). Dans la démonstration du théoréme 2
de [6], nous avons utilisé¢ la méthode de Baker.

1) Le théoreéme 2 de [6] est vrai pour toute extension galoisienne de L contenant le
corps de décomposition de F.
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Démonstration du Théoréme 1. Démontrons d’abord par récurrence sur k
que yeM = M; ..M, et Ng;(y) = fni..n impliquent y = =m;*
LTSy avec uy, ..., u; >0, 00y € Zg et

(5) [y <nd exp {(log T)(ni(s+1) (log Z) (log T 'Y =nd U,

avec le T, défini ci-dessous. Pour &k = 1 cela découle du Théoréme A.
Supposons (5) prouvé pour k — 1 avec k >2. Posons K,_; = K/,
[K':L)=ny, [K:K'l|=n, et M = M, .. M,_,. Désignons par Dy,
et g le discriminant et le nombre de classes de K. Comme

NK/L (y) = NK’/L (NK/K’ (J’)) s

dans K’ on a la décomposition en idéaux premiers

(NK/K’ (y)) = C“Bzfl«-- SBZ,Q = (o Yfl ---Y;Uq)a

ot Py, ..., P, sont les idéaux premiers distincts de K  au-dessus de

Pises Pas (0 PB) = 1, (8) [ (B) (Py oo BY'E ™Y, (7)) = BiK, et, en vertu
du Lemme 6 de [8] et Di2 | Dy, on peut supposer

Dg |6}y = Ty

max [, | < exp {(log P)(31(Iny)* log | Dy | )™

Si (m;, 9;) # 1, alors N, (355 = nalik?s avec f5 <n, et avec une
unité y € L vérifiant

nilhr log? __
l }’] \<\ Tl = Tz .
Nous avons

(6) Ngix () = B4 (y )t ... (}’(;)uq
avece

vi= TN, o= Sttt gyl
ou

44

Wy =hpu +r;, 0<ry <hp, wy =nyu;, + u; , 0<u <ny
et

di —_— I‘i +u;'hL-

. 7 nih
Ici [y; ] <TT"E TS, En comparant les normes sur I des membres de
gauche et de droite de (6), on obtient

nyl
| N (BT < (b Tl(s+1)hL)21(s+1)logg’ =T.
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Le Lemme 6 de [8] implique qu’il existe une unité ¢ dans K telle que
Ngpw@ =101 = 2B et[p]<T5T;.

Par hypothése on a y =y, u; + .. +y,u, oo y;eM,t <n,,
KHis ..., 4 sont K'-linéairement indépendants, connexes par rapport a
K/K' et [p;] <4'. En utilisant le Théoreme A, il résulte de (6) que

ety = ()Y, yFeZg
et, d’aprés une majoration de Siegel [16] concernant Ry hy: ,
%] < exp { (s +1) I hy cs log (T; T,) | D |76 (log | D l)nlng.
-(log P)’R;log® (Rshg) (Rg +hglog P) *2 (Rg +hglog P

+ log (A4'b)) (log ) (log Ty)} =
= exp {(log T,,) (Rg+h¢ log P+ log (4'b))} = Ts .

En considérant les conjugués e~ y® = ¢~y ) ul® + ... + (") u?

(i=1,..,ny)de 7'y sur K', on obtient e~ ' y; = (y)"1 ... ()" 7; avec
v; >0 et o;€Zg, ou o;] < Tg,j =1,..,t. Comme

= v" v” ny hg’
Ngn(y)) = Ngojp(e 1)’j) = (7,1t ... ") VK Ngoyp (o))

avec v; > 0, d’aprés ’hypothése de récurrence nous obtenons

~

y, =n Y. nysiy,, w; >0, y;eZg, et |
j J j j Y;

< Ts ,

ou T coincide avec U, _ | avec la restriction suivante sur U,_,: il faut pren-

2 i . ’ .
dre T'5'! au lieu de b. Avec la notation w; = min w;; nous avons
j

’

’ W’ w ’,
y; = KYj, K =T11..Tgs, Y;€Lg,
et

yj’ < Té,1(5+1)llog.@ < Uk-
Pour

Yo=Yl o Vit

onay = ky' ety vérifie (5).
SiXyyer Xm€ZLy, 2y, ..., Zg > 0 est une solution quelconque de (1), en
considérant les conjugués de o4 x; + ... + @, x,, = y sur L on obtient

x; = kv;/v avec v;, ve Zg, ol

v <(mA)", [v;|<(mA)" 'nd' U,.
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Comme « | v (xy, ..., X,,), on déduit
l——k—--| < P s[mllog (mA) + log d] ,
ce qui implique (2).

Démonstration du Corollaire 1. Considérons les Z,-modules M; = {1, «;},
ou 1, a; sont K;_ -linéairement indépendants et connexes par rapport a
K;/K;_{.Comme 1, o, ..., a,€ M, ... M, sont L-linéairement indépendants,
le Corollaire 1 est une conséquence simple de notre Théoréme 1.

Démonstration du Théoréme 2. Soit 0 # x € Z] avec N ((xy, ..., X)) <d
et considérons la décomposition de F (x) en idéaux premiers

(7) (F (x)) = pit...pss.

Posons p’i’L =(m;) et u;=hpz;+r, avec 0 <r;, <h,,i=1,..,s. En
vertu de (7) p{t ... pi* = (B) est un idéal principal dans L, et on a

(8) F(x) = nBni..ng

avec une unité n e L convenable. D’apres le Lemme 3 de [5], on peut supposer
que
l TCi < PhL/l C4 .

De plus, d’aprés ce lemme # f = ¢ ", avec une unité ¢ e L et avec un
py € Z; vérifiant

[Br] < P':ltey,
ou ¢, = ¢4 (L) est effectivement calculable. (8) implique
(9) F(ex) = Bynit...n%s
Nous pouvons maintenant appliquer le Théoréme 1 a (9), et nous obtenons
(10) max [ex;| < exp { ¢s5(cg (s+1))C7 T pes
t=i=m . (1Og P)Cg(s+1)}

avec des constantes effectives c¢5 = ¢, (K, L, 4, A, d) et ¢; = ¢;(K, L),
6 <i<<9.
Il est évident que

(11) INL/Q(xi) l < exill, i=1,...,m.
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De plus, d’aprés un théoréme bien connu
(12) s < 2lPJ/logP.
Donc, si N, est assez grand, alors en vertu de N = max | Npo (x5 | > N,,
(10), (11) et (12), P est également grand et (10) entre;ine
(13) slog(s+1) + log P + sloglog P > c,loglog N
avec une constante effective ¢, = ¢y (K, L, 4, A’, d) > 0. Comme
sloglog P <2 max (slog(s+1),log P),

(3) résulte de (13). Enfin, (3) et (12) impliquent (4).

BIBLIOGRAPHIE

[1] BorevicH, Z. I. and 1. R. SHAFAREVICH. Number theory. Academic Press, New York
and London, 1967.

[2] CoaTEs, J. An effective p-adic analogue of a theorem of Thue. Acta Arith. 15 (1969),
pp. 279-305.

[3] —— An effective p-adic analogue of a theorem of Thue II, The greatest prime factor
of a binary form. Acta Arith. 16 (1970), pp. 399-412.

[4] GYOrY, K. On the greatest prime factors of decomposable forms at integer points.
Ann. Acad. Sci. Fenn. Ser. A I, 4 (1978/1979), pp. 341-355.

[5] —— On the solutions of linear diophantine equations in algebraic integers of bounded
norm. Ann. Univ. Sci. Budapest, Sect. Math. 22-23 (1979/1980), pp. 225-233.

[6] —— Explicit upper bounds for the solutions of some diophantine equations. Ann.
Acad. Sci. Fenn. Ser. A I, 5 (1980), pp. 3-12.

[71 —— Explicit lower bounds for linear forms with algebraic coefficients. 4 paraitre.

[8] Gyory, K. and Z. Z. Papp. Effective estimates for the integer solutions of norm
form and discriminant form equations. Publ. Math. Debrecen 25 (1978),
pp. 311-325.
[9] —— Norm form equations and explicit lower bounds for linear forms with algebraic
coefficients. A paraitre.
[10] KoTov, S. V. The Thue-Mahler equation in relative fields (en russe). Acta Arith. 27
(1975), pp. 293-315.
[11] Kotov, S. V. and V. G. SprinDZUK. The Thue-Mahler equation in a relative field
and approximation of algebraic numbers by algebraic numbers (en russe).
Izv. Akad. Nauk SSSR 41 (1977), pp. 723-751.
[12] MaHLER, K. Zur Approximation algebraischer Zahlen, I. Uber den gréssten Prim-
teiler bindrer Formen. Math. Ann. 107 (1933), pp. 691-730.
[13] —— Zur Approximation algebraischer Zahlen II. Uber die Anzahl der Darstellungen
ganzer Zahlen durch Bindrformen. Math. Ann. 108 (1934), pp. 37-55.
[14] Parry, C. J. The P-adic generalization of the Thue-Siegel theorem. Acta Math. 83
(1950), pp. 1-100.
[15] ScHLICKEWEL, H. P. On norm form equations. J. Number Theory 9 (1977), pp. 370-380.
[16] SieGeL, C. L. Abschdtzung von Einheiten. Nachr. Gottingen (1969), 71-86.




	3. DÉMONSTRATIONS

