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[6] sont valables sur des corps de nombres algébriques L quelconques.
Pour m > 2, [4] et [6] contiennent, sous certaines hypothèses faites sur
a1? am, des majorations effectives pour les solutions de (1). Dans cet
article nous donnons des généralisations communes des résultats effectifs
mentionnés ci-dessus et de certains théorèmes effectifs [8], [9] obtenus dans
le cas s 0. Notre principal résultat a plusieurs applications. Certaines
d'entre elles seront publiées dans [7].

2. Enoncés des résultats

Soient L, K, ß et n1, ns comme plus haut. Supposons \ ~ß~] < b et

max | %i | < & (>2) (f~ô~| désigne la maison d'un nombre algébrique a,
1 ^ i ^ s

i.e. le maximum des valeurs absolues des racines du polynôme minimal
de a sur Z). Pour s 0 soit P & 2. Soient DK le discriminant de K,
et G une extension galoisienne de L contenant K. Désignons par hG et RG

(resp. hL et RL) le nombre de classes et le régulateur de G (resp. de L).
Posons [G : Q] g, [G : L] /et soit r le nombre des unités fondamentales
de G.

Nous disons que les nombres ocl9 ocm eK (m >2) sont connexes par
rapport à KjL si le système if des formes linéaires /(l) (x) x± +
+ xm, i 1, n, est connexe; i.e. si pour tout i ^ j, 1 < i, j < n,
il existe une suite /(i) /(ll), l{lv) /0) dans if telle que 2% /(7^)

+ 2%+1 /(V + i> g if avec 2%, 2% + 1 e Q \ {0}, p 1, w - 1 (cf. [8],

[4] ou [6]).

Exemple 1. Il est évident que si m 2, 0 ^ a^L et Z L (a2),
alors ax et a2 sont connexes par rapport à KjL.

Exemple 2. Si K L (a2, O avec [L (oq) : L] nt > 3, z 2,

m, et «2 nm alors, d'après le Lemme 4 de [8], les nombres

1, a2, am sont connexes par rapport à KjL.

Soit

C (25^+^+3) ^)fc(24(r+2)+s/(2r+13)) ,Rl(/zL log ^)3k"2

(| Dk Y'2 (log I Dk I)'»)*-1 (P> (logP)7 log3

.(RG+hG log P)Hsf+2)
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où

Ri max (Rl, e) et Rq max (RG, c).

Avec les notations et définitions données ci-dessus, on a les résultats suivants :

Théorème 1. Avec les notations ci-dessus, soient L ** K0 a K1 <=

a Kk K des corps de nombres algébriques vérifiant [Kt :A^_i] >3,
z=l, k. Soit Mt c= ZK{ un ZL-module avec générateurs de maison

< A' qui sont Kt- ^linéairement indépendants et connexes par rapport à

Ki\Kx_ l9 i 1, k. Si ccl9 um e M1 Mk sont linéairement indépendants

sur L et [~ô7] < AJ 1, m, alors toute solution xu xm e ZL,

z1? zs > 0 <7c (1) vérifie

(2) max(p^, ...,[5^,
< ^mKs+D^y08^ exp | Clog F)}

Pour k 1 cette assertion résulte du Théorème 2 de [6]. Le Théorème 1

généralise, à la forme de la borne près, les résultats de [20], [2], [3], [17], [18],

[19], [10], [11], [8], [9], [4] et [6] qui sont mentionnés dans l'introduction.
Comme il est connu, dans (1) on peut supposer sans restreindre la

généralité que ol1 1.

Corollaire L Supposons que ocl 1, a2,aOT e Zx, |~ôï~~| < ^ A\
Kx L, Kt ^ L(cc2, afi Km K et [Kt :Ki_1]> 3, z 2, m.
Alors toute solution de (1) vérifie (2) avec k m — 1.

Quand s 0, le Corollaire 1 est un cas particulier de notre Théorème 3

dans [8].
Le corollaire suivant est une conséquence immédiate du Corollaire 1.

Corollaire 2. Soient oc1 1, oc2, ocm e ZK vérifiant |~ô7] < ^4

A' et K L (a2, am). Si [L (oq) : L] nt > 3, z 2, m c£

772 ••• nm \K : L], alors toute solution de (1) vérifie (2) avec k m — 1.

Le Corollaire 2 a été démontré, avec une majoration différente de (2),
dans [6].

Si 0 # a e ZL, notons œ (a) le nombre des idéaux premiers distincts
de L divisant a, et P (a) le maximum des normes de ces idéaux. Du
Théorème 1 on peut déduire le

Théorème 2. Soient L, K, d et ccl9 ccm comme dans le Théorème 1,
et soit F(x) NK/L(a1x1 + + amxm). Il existe des constantes effectives
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ct ct (K, L, A, A\ d) > 0, i 1,2, et N0 N0 (K, L, A, A\ d) telles

que

(3) s log (s + 1) + log P > cL log log N

et

(4) P > c2 log log N

pour tout x g Z avec N ((xl5 xm)) < d et N max | NL/Q (xt) |

> A0, où s co(P(x)) et P P(P(x)).
Le Théorème 2 généralise certains récents résultats de Kotov [10] et

Györy [4],

3. Démonstrations

La démonstration du Théorème 1 sera basée sur le théorème ci-dessous.
Avec les notations du paragraphe précédent, on a le

Théorème A. Soit M — {p1, pt] cz ZK un ZL-module. Supposons

p pt L-linéairement indépendants, connexes par rapport à K/L et

max | pj | < A'. Si yeM et

NK/L(y) ßn? ...n/

avec des entiers zt > 0, alors y n"i n"s y\ où uu ...,%> 0 sont
des entiers, /gZk,

m< r
et

Texp { c3 -P9 (log P)5 l°g3 (-Rg log P)sf+2

(log &){Re+ hGlog+ log (A'b)) }
avec

c3 (25 (r + sf +3) g)22r+13sf+2rsf+4-*

Ce théorème est une conséquence *) du théorème 2 du travail [6] (voir
encore la majoration (45) de [4]). Dans la démonstration du théorème 2

de [6], nous avons utilisé la méthode de Baker.

x) Le théorème 2 de [61 est vrai pour toute extension galoisienne de L contenant le
corps de décomposition de F.
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