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[6] sont valables sur des corps de nombres algébriques L quelconques.
Pour m > 2, [4] et [6] contiennent, sous certaines hypothéses faites sur
01, ...y Uy, des majorations effectives pour les solutions de (1). Dans cet
article nous donnons des généralisations communes des résultats effectifs
mentionnés ci-dessus et de certains théorémes effectifs [8], [9] obtenus dans
le cas s = 0. Notre principal résultat a plusieurs applications. Certaines
d’entre elles seront publiées dans [7].

2. ENONCES DES RESULTATS

Soient L, K, f§ et n, ..., t, comme plus haut. Supposons ] <bet
max [, ]<Z (>2) ([« ] désigne la maison d’un nombre algébrique o,

l=i<s

i.e. le maximum des valeurs absolues des racines du polyn6me minimal
de « sur Z). Pour s = 0 soit P = & = 2. Soient Dy le discriminant de K,
et G une extension galoisienne de L contenant K. Désignons par A et Rg
(resp. iy et R;) le nombre de classes et le régulateur de G (resp. de L).
Posons [G: Q] = g, [G : L] = fetsoit rle nombre des unités fondamentales
de G.

Nous disons que les nombres ay, ..., o, € K (m >2) sont connexes par
rapport & K/L si le systéme % des formes linéaires /¥ (x) = a{? x, + ...
-+ ocf,f) X, I = 1,..,n, est connexe; i.e. si pour tout i # j, 1 <i, j <n,
il existe une suite /) = 70D [ =[]0 dans & telle que A';, [P
+ A 180 e £ avee 15y, 21,41 €Q\ {0}, n=1, ., v—1 (cf. [8],
[4] ou [6]).

ExeMPLE 1. Il est évident que si m = 2, 0 # a; €L et K = L(a,),
alors oy et o, sont connexes par rapport a K/L.

EXEMPLE 2. Si K = L (2, ..., ,) avec [L(x):L] = n; >3, i = 2,
.., m, et n, ...n, = n, alors, d’apres le Lemme 4 de [8], les nom-
bres 1, a,, ..., «, sont connexes par rapport a K/L.

Soit

C = (25 (F+Sf+3) g)k(24(r+2)+sf(2r+ 13)) RZ(hLIOg l@)3k—2 .
(| Dk [ (log | D )Y~ (P? (log P)” Rg log® (Rghe)): .
.(Rg+ hg log P)ks/+2)
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ou
R, = max (R;,e) et R; = max (Rg,e) .

Avec les notations et définitions données ci-dessus, on a les résultats suivants:

THEOREME 1. Avec les notations ci-dessus, soient L = K, < K; < ...
c K, = K des corps de nombres algébriques vérifiant [K; :K;_{] >3,
i=1,.,k Soit M; «Zx, un Zi-module avec générateurs de maison
< A" qui sont K,_,-linéairement indépendants et connexes par rapport a
KJ/Ki_,i=1,.,k Siog,..,0,€M,..M, sont linéairement indépen-
dants sur L et [o; | <A,j = 1,..,m, alors toute solution Xy, ..., x,, € Ly,
Ziy ey 23 =0 de (1) vérifie

(2) max (W, “_’m’ (pjl’lzl ._.p-is"s)hL/ln)
< (Aml(s+1)d8)log@ exp { C(RG+hG lOg P)}(A/b)c .

Pour k = 1 cette assertion résulte du Théoréme 2 de [6]. Le Théoréme 1
généralise, a la forme de la borne prés, les résultats de [20], [2], [3], [17], [18],
[19], [10], [L1], [8], [9], [4] et [6] qui sont mentionnés dans I'introduction.

Comme il est connu, dans (1) on peut supposer sans restreindre la
généralité que oy = 1.

COROLLAIRE 1. Supposons que oy = 1,d,, ..., &, eZK,ITi'l <A =4,
K, =LK, =Ly, ..,0),K, =K et [K :K,_{]>3,i=2
Alors toute solution de (1) vérifie (2) avec k = m — 1.

Quand s = 0, le Corollaire 1 est un cas particulier de notre Théoréme 3
dans [8].

Le corollaire suivant est une conséquence immédiate du Corollaire 1.

COROLLAIRE 2. Soient oy = 1,05, .., %, € Ly vérifiant [o; ] <4
= A" et K=L(y.n0,). Si [L():L] =n>3,i=2,..,m et
ny..n, = |K:L], alors toute solution de (1) vérifie (2) avec k = m — 1.

Le Corollaire 2 a €té¢ démontré, avec une majoration différente de (2),
dans [6].

Si 0 # aeZ;, notons w («) le nombre des idéaux premiers distincts

de L divisant «, et P(x) le maximum des normes de ces idéaux. Du
Théoréme 1 on peut déduire le

THEOREME 2. Soient L, K, d et oy, ..., o, comme dans le Théoréme 1,
et soit F(x) = Ng, (oyxq+...+a,x,). Il existe des constantes effectives
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c;=c¢; (K, L,A,A4,d)>0,i=1,2, e¢t N,= N,(K,L, A, A',d) telles
que

(3) slog(s+1) +1logP > c, loglog N
et
(4) P >c,loglog N

pour tout xeZj avec N ((xy,..,x,)) <d et N= max |Np,(x)]|

l1=im
>N,, ot 5= w(F(x) et P=P(F(x).
Le Théoréme 2 généralise certains récents résultats de Kotov [10] et
Gyory [4].

3. DEMONSTRATIONS

La démonstration du Théoréme 1 sera basée sur le théoréme ci-dessous.
Avec les notations du paragraphe précédent, on a le

TaEOREME A. Soit M = {u;, ..., i} < Zg un Z;-module. Supposons
Uiy .o Uy L-linéairement indépendants, connexes par rapport a K/L et
max [ pu; | <A'. Si yeM et

J

NK/L (y) = /))nil . TCis

avec des entiers z; > 0, alors y = n/1..7sy’, o uy,..,u; >0 sont
des entiers, y'e Ly,

< T

et
T = exp {¢3 Ry hy P?(log P)* Rglog® (RGhg) (Rg+hglog P)*T*2

. (log 2) (Rg+hg log P+log (A'b)) }
avec
cy = (25 (r+sf +3) g)22r+ 13sf+2rsf+44

Ce théoréme est une conséquence ') du théoréme 2 du travail [6] (voir
encore la majoration (45) de [4]). Dans la démonstration du théoréme 2
de [6], nous avons utilisé¢ la méthode de Baker.

1) Le théoreéme 2 de [6] est vrai pour toute extension galoisienne de L contenant le
corps de décomposition de F.
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