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CHAPTER 14 OF RAMANUJAN’S SECOND NOTEBOOK

by Bruce C. BERNDT LaL

When Ramanujan died in 1920 he left behind three notebooks containing
the statements of approximately 3000-4000 theorems. The second notebook
is an enlarged edition of the first, and the third is short and fragmentary.
The notebooks are thought to have been started in about 1903, and Rama-
nujan added to them until he left for England in early 1914. Many of the
formulas that Ramanujan communicated to Hardy in his now famous
letters [61] can be found in the notebooks. After Ramanujan’s death, Hardy
strongly urged the publication and editing of the notebooks. In 1929,
G. N. Watson agreed to undertake this task with the assistance of B. M.
Wilson. Possibly due to the premature death of Wilson, Watson never
completed the monumental task that laid before him. However, Watson
did write about 25 papers based on material found in the notebooks,
mainly from Chapters 16-21 of the second notebook and from the hetero-
geneous material found at the end of the second notebook. The publication
[62] of the notebooks was finally accomplished in 1957, but no editing
whatsoever was undertaken. For a general description of the notebooks
and their history, see a paper of Watson [74] or of the author [13].

Except for the papers of Watson and a paper of Hardy [28], [32] dis-
cussing a chapter on hypergeometric series, the contents of the notebooks
have yet to be thoroughly examined. In the past several years, however,
many authors have established certain formulas found in the notebooks.
Most of these formulas are found in Chapter 14 of the second Notebook.
In particular, the author [12] has shown that many of these formulas arise
from a general transformation formula for a large class of analytic Eisenstein
series. Nonetheless, the vast majority of the formulas in this chapter have
not been previously proven in print. In this paper, we examine each of the
87 formulas found in Chapter 14. Our goal has been to prove each formula
(when correct) or to give references to those formulas that have been
previously established in print. A couple of the formulas are quite incorrect,
and a few others need minor corrections. However, for the most part, the
contents of Chapter 14 are quite accurate. Unfortunately, we have fallen
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short of our goal by one or two formulas. There is one formula (Entry 23i)
which has resisted all attempts to prove it. The formula, in fact, is an
approximate formula involving a certain “error term”. Moreover, it is
not clear at all how one should properly interpret this approximation.
A companion formula (Entry 23ii) is equally vague in its meaning. However,
by assuming that a certain inversion in order of summation is allowed,
we can easily prove the formula, but with an “error term” that is identically
zero. Ramanujan, clearly, had something more general in mind. The first
corollary of Entry 1 was very difficult to prove. The author is extremely
grateful to R. J. Evans for providing a proof of a corrected version of this
formidable formula.

Chapter 14 is primarily concerned with identities involving infinite
series. Hardy [61, p. xxv] remarked “There is always more in one of Rama-
nujan’s formulae than meets the eye, as anyone who sets to work to verify
those which look the easiest will soon discover. In some the interest lies
very deep, in others comparatively near the surface; but there is not one
which is not curious and entertaining.” There could not be a more apt
comment about Chapter 14 than this last sentence of Hardy. Some of the
formulas were fairly easy to prove; others required considerable effort.
As previously indicated, many of the formulas in Chapter 14 have their
genesis in elliptic modular functions. A large number of formulas arise
from partial fraction decompositions. Some formulae are instances of the
Poisson summation formula. Six formulas lie in the realm of hypergeometric
series. There are also a few integral evaluations.

It should be emphasized that Ramanujan very seldom stated any
hypotheses for which his formulas were valid. Thus, the hypotheses ac-
companying the entries listed below are chiefly the author’s. The formulas
are not stated here in the style used by Ramanujan, but are given instead
in contemporary notation. For example, Ramanujan rarely utilized a
summation sign, and he employed the notation [x for I' (x+1). We also
adhere to the contemporary even suffixed notation for the Bernoulli and
Euler numbers, as found in [1, p. 804], for example. Also, those formulas
which needed corrections are stated in corrected form.

The material in Chapter 14 is not organized particularly well. In pre-
senting and discussing the contents of the chapter, it could be argued that a
reorganization of the chapter’s formulas is preferable. However, we have
decided to discuss each formula in the order of its appearance. Not only
is historical faithfulness preserved, but those who wish to consult the
Notebooks while reading this paper should find their task made easier.
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Very few claims are made that our proofs are like those found by Rama-
nujan. In fact, we make heavy use of Cauchy’s residue theorem. As Hardy
[31, p. 19] pointed out, Ramanujan never showed any interest in the theory
of functions of a complex variable.

In the sequel, R (f, z,) = R (z,) denotes the residue of f at a pole z,.
Also, x (n) always denote the primitive character of modulus 4, i.e.,

0, if n =0 (mod?2)),
(0.1) , x(n) = 1, if n =1 (mod 4),
—1, if n =3 (mod4).
ENTRY 1. For z* # —n(n+1)/2, where n is a nonnegative integer,
we have
° 222 NP2 (—1yr(2n+1
n=1 n(n+1) n=0 2 +n(n+1)/2

Proof. From the partial fraction decomposition [75, p. 136]

° (=172
(1.2) sech x = 4 y L C@r¥D
n=o 2n+1)*7% + 4x2

we obtain, after some simplification,
o (=D"@2n+1)

2n sech (m./2z2—1/4) = go R

From the product expansion [23, p. 37]

e'o] 2
cosh z = [] (1 4z )

+
n=0 (2n + 1)271:2

and Wallis’s product [23, p. 12]

T > dn(n+1)
= H —,
4 -1 (2n41)
we find that
) : n _, 2 8z2 — 1\ 1!
T SeCh (7'5«/22 —1/4):'&2 H 1+m
n:l l’l

The result now follows.
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COROLLARY OF ENTRY 1. For Rez > 0,

(=D"* (2n+1)

Jnn+1) (e2m=Vnnt1) _ 1))

(1.3) )

0

1 7 A — 1 nz
+ — sech | - e = e — = L,
z ,,;1 (z \/n z /4> 21z + 6
where
1 1 (=1t (2n+1)
(1.4 C =— 4+ — Z . —
p 2 n=1 \/n (n+1)

where the * on the summation sign above indicates that the terms must
be added in successive pairs in order for the series to converge.
We first show that the series defining C converges. We have '

2n + 1 2n + 3
\/n(n-l—l) \/(n—l—l) (n+2)

f—1234;_1_211/;3(1~¥+§%+0<n1)>}

b L i
N O("S/Z/ som

and so C is well defined.
Formula (1.3) does not agree with the corresponding entry in the Note-
books in that Ramanujan claims that C should be replaced by

1 §: (_1)n+1
(1.5) = +
2 .51 2n+1 4 2Ynm+1)
n 1 2 (=1t

=1 — — + —

8 2,,21 (2n+1){2n+1+2\/"—(—”—$1—)—}~2.

It is not difficult to prove the foregoing equality. Indeed, let C’ denote the
left side of (1.5). Using Gregory’s series for n/4, we find that

oar-3e fliC0,
- S0 2@n+D) T 2n w1+ 2n(n+ 1)




5

{2\/m—-(2n+1)}
20n+1) {20 + 1 +2/n(m+1)}
{dn(n+1) — (2n+1)*}
rn+D{2n+1+2/n(t D}

T X
8 n=1

— -2 Y (=1
8 n=1

and (1.5) easily follows.

Calculations of J. Hill first demonstrated that the constant given by
Ramanujan is incorrect. In fact, C’ = .61144169... , while C = .54661949....
The formula for C given in (1.4) can be transformed into another formula

which exhibits Ramanujan’s error. Letting a, = (2n+1)/ \/ n(n+1), we have

1 1 2
C =“‘2— +_2‘n§1 (an-an+1)
n odd
1 1 2
= 3 + 5 ngl {(a,=1) — (@41 —1)}
n odd
1 i( - n+1/2 )
— 4 1\ —e
& n=1 \/n(n—}—l)
1 N % (_1)n+12n+1—2\/n(n+1)
2 a= 2\/11(71—1—1)
1 0 (_1)n+1
25 + Z AT Jo LN
n=1 2/n(n+1) 2n+14+2/n(n+1))

Comparing the above with (1.5), we find that Ramanujan neglected a factor

of 2./n (n+1) in the denominators of the summands on the left side of (1.5).

After stating the Corollary of Entry 1, Ramanujan declares “Similarly
any function whose denominator is in the form of a product can be expressed
as the sum of partial fractions and many other theorems may be deduced
from the result.” But nonetheless, we have been unable to prove that (1.3)
is a corollary of (1.1). The following proof of (1.3) is due to R.J. Evans.

Proof of Corollary to Entry 1. We prove the result for z = x > 0;
the more general result will then hold by analytic continuation.
For n > 1, let a, be as defined above and put

1

1
2=Vt _ 1 opy Sum41)

fn(x) =




Thus,
(16> Z (_1)n+1 anfn(x)
i (— 1+ 2n + 1
= Z ,\/}’l (n+1) (eznxd n(n+1) __ 1)
_L g Grtenty
2mx a—1 nn+1)

By combining successive terms we find after an elementary calculation that

(=)*t@en+1) 2 (1 1 >__1

n n+ 2

(1.7) i 2.

= 1 n(n+1) n=1
n odd

Putting (1.7) into (1.6) and comparing the resulting equality with (1.3),
we find that we must show that

o0 ' 1 00} .

(1.8) . (—1)"“anfn(X)+— sech( N ’-/4) n6x = -C,
n=1 X n=1 ‘

1

where *

1 1 2
C = 5 5 nZI —lyr1) -
n odd

From [75, p. 136],

1 1 X 1 1 1 ® 2x
1.9 = —coth[—-)] — — = — — — ) |
(1.9) e —1 2 (2) 2 X 2 * mz=1 x? + 4n*m? |

Using (1.2) and (1.9) in (1.8) and then simplifying, we find that
x 2 (—1)"+1<2n+1>} |

® 1
1.10 —(=1) —
(1.10) n;{z( )a"+nm21n(n+1)x2+mz E
2 (=Dr@em+1)
o nzl mzo m(m+1)x* + n? !
© (=" 2m+1

m=1 m(m+1)x + n?

Letting
2n + 1

n(n+1)x2 + m*’

B(m,n) =




N
we see that (1.10) may be written as

(o0]
n=1 m=1
n even

{B(m,n—1) — B(m,n)}

DM 8

(1.11)

3| =

!

1 x 2 2
= —-+-Y Y {B(mn—1)—B(m,n)}.
2 T m=1 n=1

A brief calculation gives
2n?x? — 2m?

—1) — B = :
B(m,n—1) (m, n) (m2+n2x2—nx2) (mz_l_nzxz +nx2)

Replacing x by x/2, we see then that (1.11) is equivalent to

n?x? — m?

(1.12 > Y

n=1 m=1 (nlz +n2x2)2 - n2x4/4

T i ; n*x? — m?
R —— + .
2x 5 S (mP4ntx®)? — nPxt4
By a brief calculation,
i i n?x* — m? n?x? — m?
2= (m?+ePx?)E —nPxt4 (m? 4 nPx?)?

is seen to be an absolutely convergent double series, and so an inversion
in order of summation is justified. Thus, (1.12) is seen to be equivalent to

o0 00 n2x2 _ 7’712 n o) 0 n2x2 . m.’l
(1.13) Z # 2 a2 — T Lo T Z Z 2 ]
n=1 m=1(m +nx) 2% m=1 n=1 (m +nx)

0 00 2.,.—2 2

T n-x — m

I
|
vl
|
«
N
1
]

n=1 m=1 (inz +n2x_2)2 ,

where on the right side we have replaced the indices m and n by n and m,
respectively. Let the left side of (1.13) be denoted by F (x). Thus, (1.13) may
be rewritten as

(1.14) F(x) + x7?F(1/x) = —n/(2x).

Now return to (1.9). Replace x by 2nnx and differentiate the extremal
sides with respect to x. After some simplification, we find that
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(1.15) 2n? 1
St (ennx __e—-rmx)2 2n2x2
@ 2n2x2 o 1 o n2x2 _ m2

- 3 - T = X

2 (n%x2 4+ m?)? Zon?x? + m? e (nzxz +m?)? :
Summing both sides of (1.15) on n, 1 <n < o0, we deduce that

2

12x?

1 e8]
3 n* > csch® (nnx) — = F(x).
n=1

Thus, (1.14) is seen to be equivalent to

o0

nx Y. csch® (nnx) + i Y csch?(nn/x)

1 X n=1

1+ +1)
= — —(x+ —].
6 X

If we put « = nx and f = 7n/x, we find that for ¢, § > 0 and «f = n?,

n

(1.16) o i csch? (an) + B i csch? (fn) = —1 + («+p)/6.

In summary, we have shown that (1.3) is equivalent to (1.16). But the author
[12, Proposition 2.25] has previously proved (1.16), and hence the proof is
complete.

Observe that (1.13) provides a beautiful example of a nonabsolutely
convergent double series whose order of summation cannot be inverted.

EnTRY 2. Let m, n, x, and y be complex numbers. Suppose that
I' (1+xz) and I (1+yz) have no coincident poles and that z = 1 is not a
pole of either. Then if Re (m+n) > O,

o) 5 (— D1 T (1 —kyf)
w1 T'(m=—k+ 1) IF'(n+1—ky/x) I (k)(x+k)
N - (=D (1 —kx/y)
o1 T'(n—k+1) I'(m+1—kx/y) I'(k)(y+k)
B F'x+1)I'(y+1)

IF'x+m+DI(y+n+1)"
Proof. Let ]
I'l+xz) I'(1+yz) |

J(z) = Fm+xz+)I(n+yz+1)(z—1)
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Then f has poles at z = 1, — j /x, and —k/y, where 1 <j, k < oo, and
all poles are simple by hypothesis. Routine calculations yield

R(1) = 'x+D)I'(y+1)

F(m+x+D) T'(n+y+1) "’
o (= 1Y T (1 —jy/x)
R(=jx) = IF'(m—j+D)Tm—jy/x+1D({+x)I'(j) ’
and
—D*r{-k
R(—kly) = (=D* I'(1 —kx/y)

T(m—kx/y+ 1) T (n—k+1)(k+y) T (k)"

Let Cy be a positively oriented square centered at the origin and with
vertical and horizontal sides of length 2N. We shall let N tend to oo on
some countable subset of the positive real numbers chosen so that the sides
of Cy never get closer than some fixed positive distance from the set of
poles of f. Using Stirling’s formula, we find that

f (Z) — 0 (lzl—Re(m+n)—-1) ,
as | z| tends to oo. Hence, if Re (m+n) > 0, we deduce that
(2.2) j. f(2)dz = o(1),
CN

as N tends to oo.

Now integrate f over Cy and apply the residue theorem. Let N tend to
co and use (2.2). We then deduce (2.1) immediately.

CoRrROLLARY 1 OF ENTRY 2. Let m, n, and x be complex numbers such
that x is not an integer and that Re m+n) > —1. Then

0 (_1)k
2.3
(2.3) k:‘_:oo (x+k)I'(m+1—=k)y I'(n+1+k)

Y[
sin (mx) F'(m+x+1)T'(h—x+1)

COROLLARY 2 OF ENTRY 2. Let a and 8 be complex numbers with
Re (e +f) > 0. Then

- (—1F
2.4)
. kgo k+1)T (@—k) T (B+k+ 1)




— 10 —

+§ (= 1) B m
kDT (B—K) T (a+k+1) 2F(o¢+%>F< 1>

:3+§

X

Corollaries 1 and 2 are not really corollaries of Entry 2. Ramanujan
evidently means to imply that the proofs of the present results are very
much like the proof of the preceding theorem.

Proof of Corollary 1. Let

T
sin (mz2)(z+x) T(m+1—-2)T'(n+1+z2)"

f(2) =

Observe that f has a simple pole at z = —x and at each integer k. Routine
calculations give

7
sin (nx) '(m+1+x)I’'(n+1—x)

R(—x) = —

and
(—DF

R (k) = :
k+x) I'(m+1—=k)yI'(n+1+k)

Let Cy be the positively oriented square centered at the origin with vertical
and horizontal sides passing through + (N +1/2) and + (N +1/2) i, res-
pectively, where N is a positive integer. By Stirling’s formula,

f(2) = O(|z|7Remtm=2),
as Iz] tends to oco. Hence, for Re (m+n) > —1,

(2.5) J f(2)dz =o(D),

Cn

as N tends to co. Apply the residue theorem to the integral of f over Cy.
Let N tend to oo. Using (2.5), we deduce (2.3) at once.

Proof of Corollary 2. Integrate

s
sin (nz)(z—1/2) '(a+2z) ' (f—2z+1)

over the same square as in the foregoing proof. The present proof follows
along precisely the same lines, and we omit it.




A second proof can be given as follows. Let the left side of (2.4) be
denoted by g («, f). After a little manipulation, we see that g (a, f) may
be written as

r(%m) r(—o+k)

0

2 3
=””F<§+k>f%1+ﬁ+k)

sin (7o)
27

(2.6) g(a,p) =

s

which converges absolutely for Re (e+f) > 0 by Stirling’s formula. Now
apply Dougall’s formula [33, p. 52] to the right side of (2.6) to obtain

i

2F<a+;)r<ﬁ+;>.

As pointed out by Hardy [28], [32, pp. 505-516], Ramanujan inde-
pendently discovered Dougall’s formula and made several applications
of it. Quite possibly then, Ramanujan established Corollary 2 by the
argument employed in the second proof above. Corollary 1 may also be
proved with the aid of Dougall’s theorem. However, Dougall’s theorem
is not applicable to Entry 2. The next entry is also an instance of Dougall’s
theorem.

g (OC’ B) =

ENTRY 3. Let «, B, 9, and 6 be complex numbers such that Re (x+f
+y+9) > —1. Then

ERD) :
=0 I'(a—=k+D) I B-k+1) T (y+k+1D) T (0+k+1)
. :
i=1 T'(a+k+D) I B+k+DT'y—k+D) T (O~k+1)
'(a+B+y+06+1)

Fa+y+D I B+y+ DT (@+0+DT(B+5+1°
Proof. The left side of (3.1) may be written as
sin (no) sin (7f) i F'k—o) I'(k—p)

n km—w T@+k+DT S+k+1)°

which converges absolutely for Re(x+pf+y+68) > —1 by Stirling’s

formula. A straightforward application of Dougall’s formula [33, p. 52]
yields (3.1) immediately.
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ENTRY 4. If z # me=™/3, where m is a nonzero integer, then

® 1 T sinh (nzﬁ) — \/5 sin (nz)
(4.1) Z 3 2 4.2 — )
=1 W0+ 27+ 2 n 2z./3  cosh (nz/3) — cos (nz)

Proof. let f (z) denote the right side of (4.1). We expand f into
partial fractions. Since

cosh (nz./3) — cos (nz) = 2 sin (nze™/?) sin (nze™ ™),
f has simple poles at z = ne*"™/3 for each nonzero integer n. Now
sinh (nne™ 3. /3) — \/5 sin (wne™™/3)

4n(—1)"/3 sin (nne=2%/3) '

Note that R (—ne ™/®) = — R (ne™™/3). The residues of the poles at
+ ne™3 are obtained by replacing e~ "3 by e"/® above. For each positive
integer n, the sum of the principal parts for the four poles + ne=™/3 is
then

R (ne— ni/3) —

4.2) (—1)"{ e~ ™3 { ginh (nne‘”"/?’\/g) — \/5 sin (zne™™/3) )

2\/?7 sin (mne™2™/3) (2% —n2e2™/3)
e™/3 { sinh (nne“i”\/g) — \//5 sin (nne™/3))

sin (nne? ni/3) (22 _ nZeZni/S)

Elementary calculations give

+i(—1" sinh (zm\/3), if n =2m,

sin (nmne*2™?) = v
(—1)"*t cosh (nny/3/2), if n=2m+1,

and
e=™/3 { sinh (nnei“i/3\/§) — \/5 sin (nne®™/3)}

2(—1)" sinh (nm./3), if n=2m,
+ 2i(—1)™*! cosh (nny/3/2), if n =2m+1.

Using the above calculations, we find that (4.2) simplifies to #n*/(z* +n?z>
+n*) for both n even and n odd. Hence,

0 2

f(2) =X

=zt +n?2? + 0t

+4g(2),

where g is entire. However, as |z | — oo, we clearly see that g (z) — 0.




Thus, g is a bounded entire function. By Liouville’s theorem, g (z) is con-
stant, and this constant is obviously 0. Hence, the proof is complete.

CoROLLARY TO ENTRY 4. For each nonzero integer »,
ot 1 1 12 1

k; K+ @ + () iE - 12nt 2 k:‘:l K2+ 3n%

Proof. 1In the derivation below, we shall employ (1.9) and [75, p. 136]

1 2z 2 (=1
csch (mz) = — + — —_,
(n2) nz TSzt +k?

In Entry 4 let z = 2n to get

) - — " {coth2un\/3) + csch (2nn./3)
o k?. + (21’1)2 + (211)4/k2 - 4n\/§ CO N ) <+ CSC ( Th/ )}
L Ly ! (=1
= + _— N
et L et L e e

and the result follows.

ENTRY 51 Let 0 < x < m/(n+1/2), where n is a positive integer.
Then

g sin” "t (kx) /7 ['(n+1/2)
= k 2 I+l

Proof. Since [23, p. 25]

o o M2n+1\ |
sin*"*lx = 272 Y (—-1)’“”( _ )sm {@n+1-2j)x},
ji=0 J
we have

o) ca2n+1
5.1) sin (kx)
(=D 2n+ 1\ & sin {(2n+1—2j)kx}
= -1y
22n jgo ( ) ( j > kgl k
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we find that, for 0 < x < n/(n+1/2),

S 2 sin®" L (kx) (= (2n+ 1\ —(2n+1-2))x
CI LT T (—D( j,> 2

_n 2n (=1D" i (2n+1 _

—2—2,7ﬁ<n> T SEmi Z (=1 ( j )(2”+1—‘2])X,

where we used the evaluation [23, p. 3]

™ [k k-1
R ]

withm = nand k = 2n + 1.
We next show that the sum on the far right side of (5.3) vanishes. We

have
2n+1

2 _Z (—1)f< J+1> Gn+1-2) = 3 (—1)f<2 ]+1> Qn+1—2j)
2n+1 2n+1
—@n+n 3 (M —2 o () -0,

where we have used (5.4) and [23, p. 4]

" . /n
— 1)y = 0.
g‘o( yJ <J>

™ 2n+ 1
(kx) T 2n
Z - 22n+ 1 ?

n

Hence, from (5.3),

which is easily seen to be equivalent to the desired result by the Legendre
duplication formula.

ENTRY 5ii. Let 0 < x <7/(n+1), where n is a positive integer. Then

2"+2(kx) \/Er(n+1/2)
2 T+l

Proof. Let f (x) denote the left side of (5.5). Since [23, p. 25]

(5.5) Z

" . /2n+2
sin?"*2x — 2—2n—2{ Z (__1)n+1+.]2< n. > cos {2(n+1—j)x}
j=0 J

<2n+2>]
+ :
n+1
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we find that

(-1t 2 C/2n4+2\ 2 cos{2(m+1—j)kx}
(5.6)  f(x) =1—22,1)T _;O (=1 < " > ; 12

1 2n+2>n
+22n+2 n—l—l, 6

Now [23, p. 39]

k=1 I

Employing the above and (5.4) with m = n and k& = 2rn + 2, we find
that (5.6) becomes

(5.7 f&) =

G 0 (M) - - s )

1 /2n+1\ n? . 1 /2n+2\ =n?
22n+1 ) —6— 22n+2 n +1 6 2
where 0 << x <mz/(n+1). First,

(5.8) 2 Z (——1)’( >(n+1-—])2

2n+2 2 ny 2 ‘ 2
- 3 <—1)J< N ) (41— = z —1)1(2”; >J~2=o.

Next, from two applications of (5.4), we find that

>
(5.9) Z (-1)J< ”J+ )(n+1—-])

=@+ L 0 (M meen 3 )

= @n+2) (=1y (2:> — (D (=1) (2”: 1) = (-1 (2:) .

Substituting (5.8) and (5.9) into (5.7), we find that

709 = g (7).
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which is again equivalent to the desired result by the Legendre duplication
formula.

ENTRY 6. Form > 0, let

B 0 ﬁ 21
so- s () ]

Let o, § > O with aff = n. Then

Ja { L i sech?” (ock)}

2 k=1

I'(n) —

F(Hlmﬂf{ + 2 ¢(ﬁk)}

Proof. Recall the Poisson summation formula. If f is a continuous
function of bounded variation on [a, 6], then

a=k<=b

b 0 b
(6.1) ' o f (k) = J f)dx +2 ). J f (x) cos 2nkx) dx ,
k=1

where the prime ' on the summation sign at the left indicates that if a or b
1s an integer, then only 5 f (a) or 5 f (b) , respectively, is counted.

Now ¢ (x) was studied by Ramanujan in [58], [61, pp. 53-58]. On
page 54 of [61] Ramanujan remarks that

I'(n+ix) I' (n—ix)

¢ (x) = ()

This is not too difficult to prove; use the Weierstrass product formula
for the quotient of I'-functions above, and after considerable simplification,
the desired equality follows. We shall apply (6.1) with f (x) = ¢ (Bx),
a = 0, and b = oo. By using Stirling’s formula for | I' (n+ix) I’ (n
as x tends to oo, we easily justify letting b tend to oo. Furthermore, for
m > 0 and n > 0 [58], [61, p. 53],

j ¢ (x) cos (2mx)dx = \/2; I (;—(;/2) sech®" m .
0

Hence, since ¢ (0) = 1, (6.1) yields




o0 1 [s.¢]
+ Y ¢(ﬁk)=[§J 6 (x) dx +
=1

0

I'(n+1/2) -
=\/;_m—)—{2+ Z sech (nk/ﬂ)}

which is easily seen to be equivalent to the desired result.

i J ¢ (x) cos (2nkx/p) dx

EnTRY 7. Let a, f > 0 with «f = = and let z be an arbitrary complex
number. Then

n's

11 « ‘
o714 \/oc {5 + e= % cos (azk)
k=1

\/ﬁ{ + Z e ¥ cosh (Bzk) ¢ -
J

Proof. Apply the Poisson formula (6.1) with f (x) = exp (—a*x?)
cos (azx), a = 0, and b = oo. Now [23, p. 480],

¢ 9] 1 ;— .
(7.1) J e cos (rx)dx = 3 \/— e~
c
0

where Re ¢ > 0 and r is arbitrary. With the use of the above evaluation,
all of the calculations are quite routine, and the desired formula follows
with no difficulty.

COROLLARY TO ENTRY 7. Let o, f > O with «ff = n. Then
— 11 0
[ v e ]
2 k=1
Proof. Let z = 0 in Entry 7.

Note that the above is simply the functional equation for the classical
theta-function.

ENTRY 8i. Let o, f,n > 0 with «ff = 7 and 0 < fn < n. Then

sinh (2ank) sin (2fBnk)
o237k + 5 o28% _ 1

> 8

=1 —1 k=1

o coth (an) — 211 p cot (Bn) — %n

L’Enseignement mathém., t, XXVI, fasc. 1-2. 2
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Entry 8i arises from the transformation formulae of a function akin
to the logarithm of the Dedekind eta-function. The first proof of Entry 8i
preceded that by Ramanujan and was found by Schlomilch [69], [70, p. 156].
Later proofs have been given by Rao and Ayyar [63], Lagrange [44], and
the author [12, equation (3.31)], [8, equation (11.21)].

ENTRY 8i1. Let a, f,n > 0 with ¢ff = 7w and 0 < an < 7. Then

i cos (2ank) _ * cosh (2fnk)

S k(@ 1) =1k (e2PF - 1)
sin («n) }

2 1 2 2
=g —ﬁ)+LOg{sinh (Bn)

Entry 8ii arises from the transformation formulae of a function which
generalizes the logarithm of the Dedekind eta-function. Proofs have been
given by Lagrange [44] and the author [12, Proposition 3.4].

ENTRY 8iii. Let o, B, 1,7, t > O with of = 7, r = np, and ¢t = n/B>.
Let C be the positively oriented parallelogram with vertices + i and + ¢.
Let ¢ (z) be entire. Let m be a positive integer and put M = m + 1/2.
Define

¢ (rMz)

_ 1) (e2niMz/t _ 1) ?

fm (Z) = Z(e—anz

and assume that f,, (z) tends to O boundedly on C' = C — { + i, + ¢}
as m tends to co. Then

Z ¢ (ank) + ¢ (—ank) N ¢ (ocnk)

8.1
@1 2 P };
Z ¢ (Bnki) + ¢ (—pBnki) 2 ¢ (Bnki)
k; k(2P —1) k; k
_ mig (0)  o’¢ (0) N B*¢ (0)  ang’ (0) N pni¢’ (0) n*¢" (0)
2 6 6 2 2 4

provided that all series above converge.

The obviously very restrictive hypotheses on ¢ are of a technical nature.
We could state these hypotheses more specifically, but an even lengthier
statement of the theorem would be necessary.




e o

e
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Proof. We integrate f, (z) over C. On the interior of C, f, has
simple poles at z = +ik/M and at z = +kt/M, 1 <k <m. Also, there
is a triple pole at z = 0. Straightforward calculations give

ki {
R (ik/ M) = ¢2(7:ikl){e2“"/t — + 1},

¢ (—rki)
ik (2™ —1)

R(ki/M) = — qb(rkt){eml_ 1 +1},

R (—ik|M) =

2nik
and
¢ (—rkt)
2rik (2™ —1)°

R(—kt/|M) = —
where*l <k <m. Now,

it
(2nM)*z3

1 X i Mz 1 /aMz\?
: 1—}-7er+§(7th) + ... 1——t————§ t + ...,

and so

1
fm(2) = {¢(O)+¢’(0)7‘MZ+~2—¢”(0)(7”M2)2+...}

¢ (0) N it (0)  i¢(0) N irtg’ (0) N r¢’ (0) N ir't¢” (0) ’

R(0) = —=
©) 4 12 12¢ 41 4r 8n?

Applying the residue theorem and letting M tend to co, we find that

2 (ki) + ¢ (—rki) ¢ (rki)
—k; K@@ —1) T &k

M 8

(8.2) lim J f,(2)dz

m — oo

¢ (rkt) + ¢ (—rkt) > o (rkt)  mip(0)

- k; k(@™ -1 k; kT

_ mtp (0) " ng (0)  rg’ (0) irg’ (0) r’t¢" (0)
6 6t > T T2 T T4

By our hypotheses and the bounded convergence theorem, the limit on the
left side of (8.2) is 0. Substituting r = nf and ¢ = n/B* in (8.2) and re-
arranging, we deduce (8.1).
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We next show that Entry 8ii is a special instance of Entry 8iii.

Let ¢ (z) = exp (2iz). Thus, ¢ (oank) + ¢ (—ank) = 2 cos (2ank) and
¢ (Bnki) + ¢ (— Pnki) = 2 cosh (2fnk). Since 0 < an < 7, by [23, p. 38]
and (5.2), we have

¢ (omk)

e2ankt

1k

T — 20n
2

M s

= — Log {2sin (an) } + i

nM

I

k
Secondly, an elementary calculation gives

Q; ¢ (Bnki) i

o~ 2Bnk

= fn — Log { 2sinh (fn)} .

Thus,

¢(ﬁnkl) Z (omk) m'qb(O) ¢ (0) N B¢ (0)

2 6 6

Om(ﬁ (0) N ﬂnch (0) _n*¢"(0)
2 2 4

sin 1 1
=Log{_—@} +n? — —o® + gﬁz.

sinh (fn) 6

Hence, formally, Entry 8ii follows readily from Entry 8iii.

It remains to check the hypotheses concerning the parallelogram C.
This is easily done by parameterizing each side of C. In the first quadrant,
[ (2) trivially tends to O boundedly on C’. The same is true on C’ in the
second quadrant, but the hypothesis » > 0 is needed. Since 0 < an < =,
f m (2) tends to 0 boundedly on that part of C’ in the lower half-plane.

COROLLARY i OF ENTRY 8iii. Let o, f > 0 with «f = n®. Then

a+p 1

oo K o k
8.3 = - —. |
(8.3) % k§1 2%k _ +p k§1 o2k _ 1 24 4 |

This entry is really not a corollary of Entry 8iii; however, a proof can be
given along somewhat the same lines.

Formula (8.3) was first established by Schlomilch [69], [70, p. 157].
Other proofs have been given by Malurkar [49], Rao and Ayyar [63],
Lagrange [44], Grosswald [25], and the author [12, Proposition 2.11],

[8, equation (11.7)]. In essence, (8.3) was also established by Hurwitz [34],
[35] and Guinand [26], although neither author explicitly states the formula.
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. . . 2
COROLLARY ii OF COROLLARY i. Let o, B > 0 with aff = 7. Then

14 o | _ om0k

o
(x—p)/12 _ ( _ -
e = — .
<ﬁ> kl;ll 1 — e 2%

Proof. Let u,v > 0 with uv = n*. Write Corollary i in the form

0 ke—2uk 2 0 ke—2vk _i +’U_/Li __i
Z ] = g~ 2"k L™ Z 1 —e 2% 24 24 4y

Integrate both sides of the above with respect to u over the interval [r, o]

to obtain o
1 0 1 _ e—?_ak 0 a v (U/u)
—2— kgl LOg W ; J e—ZDk

o — 7 1
24 24

J (v/u) du + ! Log (n/a) .

T
In the integrals that remain, make the change of variable u = n%/v. By
the hypothesis, the limits 7 and o are transformed into n and f, respectively.
Thus, the above becomes

1 1 —e 2% o —B

1
L = + — Lo o) .
3, Z 08 3 = oy 5 Log (Bl

Multiplying both sides by 2 and then exponentiating both sides yields
the desired result.

ExaMpPLE. We have

® k 1 1
(8-4) ,El 2 1 24 8n’

This example is obtained from Corollary i by setting « = f = 7.
Ramanujan stated (8.4) as a problem in [56], [61, p. 326]. He later gave a
proof of (8.4) in [57, p. 361], [61, p. 34] by using some formulae from the
theory of elliptic functions. But, as already indicated, (8.4) was first estab-
lished by Schlomilch [69], [70, p. 157]. Proofs of (8.4) have also been given
by Krishnamaghari [43], Watson [73], Sandham [66], Lewittes [46], [47],
and Ling [48], in addition to the authors listed after Corollary i.

ENTRY 9i. Let o, f > O with «ff = n/2. Let & > 0 be chosen so that
hfo. > 1 and hjo is not an odd integer. Let m be the greatest odd integer




2

that is less than A/a. Let n be an arbitrary real number. Let ¢ (x) be con-
tinuous and of bounded variation on [0, 4] and define

h
(9.1 U () = J ¢ (x) cos (tx) dx .

If y is defined by (0.1), then

& i x (k) sin (ank) ¢ (ak) = 1
k=1

& |

S 200 Ly (Bk=n) =y (Be+m)} .

Proof. Let f be a continuous function of bounded variation on [a, b].
Then the Poisson formula for sine transforms [72, p. 66]

w b
(9.2) Sy fR) = Y J £ (x) sin (nkx/2) dx
a=k=b k=1

is valid, where the prime ’ on the summation sign on the left side has the

same meaning as in (6.1). Let f (x) = sin (anx) ¢ («x),a = 0,and b = h/a.
Then

(9.3) i 7 (k) sin (ank) ¢ (ak)
k=1

e hja
= > 7 (k)J sin (anx) ¢ (ox) sin (nkx/2) dx .
k=1

0

The integrals on the right side of (9.3) are easily calculated by (9.1) to
complete the proof.

ExTrRY 9ii. Let a, B, h, m, n, and ¢ satisfy the same hypotheses as in
Entry 91. Define

U (t) = J ¢ (x) sin (tx) dx .

0

Then

s Y 7 (k) cos (ank)é (ak) = Y 7 () { (Ble—n) + v (Be+m)}.
k=1 =

1
2 g
Proof. The proof is completely analogous to that for Entry 9i.

Ramanujan stated Entries 9i and 9ii with the extra condition | n| < B,
but this hypothesis does not seem necessary.
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o3
i

4]

, Let V(z) = —1/z, r; =0, and -1 <r, =r<0. Then R; =r
; = 0, and p = 0. Also, let s =
| G ﬁnd that
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EnTRY 10. Let o, § > 0 with «f = n/4, and let z be an arbitrary
complex number. Then

o= 14 \/g Yy (k) e~ sin (azk)
k=1

= JB Y x(e " sinh (Bzk) .

Entry 10 should be compared with Entry 7
Proof. Apply (9.2) with f (x) = e *** sin (azx), a = 0, and b
By (7.1),

= G.

J e~ sin (azx) sin (nkx/2) dx

0

\//; (e“(xz—nk/2)2/(4g2) _ e—(a2+7tk/2)2/(4d2))
4o

— Vl)—ﬁ—/—& e_k2ﬂ2_22/4

B o AR s B St

sinh (fzk) .
The entry now readily follows.
EnTtRY 11. Let o, f > 0 with of = =, and let » be real with lnl
< f3/2. Then
£ 1 > cos (ank
® (11.1) ay—sec(an) + Y ¥ ( )1
ki 4 k=1

=~ cosh (B?k)

1 1 2 cosh (2fnk)
| e

Proof. We shall use a transformation formula, Theorem 3 (i), from
the author’s paper [10]. We refer the reader to [10] for all notation used
below.

— N = 1. By [10, equation (4.5)],

1 -
f*(z,1;0,r;1, ) =2mi { — + By i ,
8z 4

where B, (x) denotes the first Bernoulli polynomial. It follows that
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3
(112) Z X(.u')f*(zs 1903 r, la.u) = —7i.
u=0

We next calculate, for Imz > 0,

H,(z,1; % 0,7)

= Y Y g(k)erktm=rnlz 4 N Ny (k) ek mEm /2
m=1 k=1 m=1 k=1
= cos (nkr/2)
=2 2 1 —mikz/2 .
k=1 e — 1
Hence,
(11.3) z—l(—2ni/4)G(X)H2(_1/Z’1;)(;0,7,)
2n & cos (nkr/2)
B e kgl % (k) omik/(22) _ "

Next, we calculate, for Im z > 0,

(11.4) —2niH,(z,1;y;r,0)

= —27ri z Z X(m) eZnik(m+r)z — 27i Z z )((Wl) eZnik(m—r)z

m=1 k=1 m=1 k=1
oo} 3 s}
= —4ni Y cos (2nkrz) ), y(j) ) eFmKGmTI=
k=1 j=0 m=0

2 cos (2nkrz)

= —2ni Z

.= cosh (2mikz)

Lastly, we need to calculate & _ (1, x, r), where
L (s, 201 = L(s, 1,1 —e™ L(s, 1, —7)
and where, for Res > 0 and «a real,

L(s,p,a) = > yk(k+a)".

k> —a

Also define, for a, x real and Res > 1,
L(s,x,a,y) = Y ™2y (k+a)*,
k=0

where the prime ' on the summation sign indicates that the possible term .
k = —a is omitted from the summation. The functions L (s, x, a),
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£, (s, a), and L (s, x,a, y) possess analytic continuations into the
entire complex s-plane. Now apply the functional equation for L (s, x, a, x)

[9, Theorem 5.1] to get, for all s,
L (1 —S, —F, 07 X) = F(S) (z/n)s (1/2) e—ﬂ:iS/Z g-}— (Sa Xs r) .

Hence,
(115) g+(19X>r) = TEL(Oa —'F,O,X)-
Now, for Res > 0,
(11.6) L(s, =10, = Y e ™/ y(k)k~*
k=1
— e—m’r/Z Z e—27zikr (4k+1)—s _ e—37rir/2 Z e—2nikr (4k+3)—s
k=0 k=0

— o mir/2 4_s¢(—}", 1/4’ S) — o~ 3mir/2 4—S¢(—l”, 3/4, s),

where, for x, a real and Res > 1,
p(v,a,5) = Y S (k+a)
k=0

denotes Lerch’s zeta-function. By analytic continuation, the extreme left
and right sides of (11.6) are equal for all s. Now [5, p. 164],

1
(11.7) é(x,a,0) = Elcot ™) + 5
Hence, from (11.5)-(11.7),
(118) Z—l g—i— (I,X,V)

n : 1 i . 1 i
— —-mir/2 ) — t _ p—3mir/2 ) .
Z<e {2 2co (nr)} e {2 2cot(nr)}>

T T
= —e ™" sin (nr/2) { cot (nr) + i} = 3, sec (nr/2) .
i yA

~

Substitute (11.2), (11.3), (11.4), and (11.8) into equation (4.6) of [10]
to get

2n 2 cos (nkr/2) T
7 kgl X (.l() em’k/(2z) ~ 1 + Z S€C (7131"/2)
_ o i cos (2nkrz) i

=4 cosh (2mikz)
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where Imz > 0 and 0 < —r < 1. Now let z = in/(2¢?) and r = 2n/p,
where off = 7. Thus, 0 < —n < f/2. Hence,

Y Z X(k) cos (ank)

— o?i sec (an)

2 h (2fnk
= —2ni ), S?S_( ﬁzn ) _ i
k=1 cosh (f°k)

Multiplying the above by i/(4a) yields (11.1). Now note that both sides
of (11.1) are even functions of n. Thus, (11.1) is valid for 0 < In] < /2
and, hence, by continuity, for | n | < f/2.

We remark that the differentiation of (11.1) with respect to n yields
the last formula in [8] after suitable redefinitions of the parameters. However,
it appears to be difficult to deduce (11.1) from the latter formula.

EnTRY 12. Let o, f > O with af = 7/2, and let 0 < n < 7/(2%). Then

> . sinh (Bnk)
(12.) = k; % (k) cosh (a?k) ) cosh (5%k)

Proof. 1In [12, equation (4.23)] we showed that if 0 < r < 1 and
%, f > 0 with «f = =*/16. then

o) 3 k2 i inh (2frk

Replace o by «?/2 and B by ?/2; hence, in the new notation af = 7/2.
Let r = 2on/n. Thus, we need 0 < n < n/(2x¢). With these substitutions,
we easily find that (12.2) is transformed into (12.1). |

COROLLARY OF ENTRY 12. Leta, f,¢ > 0 with «f = ©/2 and ¢t = o/p.
Let C be the positively oriented parallelogram with vertices + i and + ¢.
Let ¢ (z) be entire. For each positive integer N, define,

¢ (4fNz)
cosh (2nNz) cosh (2niNz/t)

In(2) =

and assume that N f (z) tends to O boundedly on C as N tends to oo.
Then




L
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o Bk = ¢ (—ak)
(12-3) : k; 7 () cosh (k)

2 ipk) — ¢ (—ifk)
T ,Z:l % (0 W(lﬁcc)ash (ﬁzk)l o

The above entry is not a corollary of Entry 12. In fact, as we shall see
later, the converse is true. As with Entry 8iii, at the expense of brevity,
the hypotheses on fy (z) can be made more explicit.

Proof. We integrate fy (z) over C. On the interior of C, f~(2) has
simple poles at z = i (2k+1)/(4N) and at z = 2k+1)¢/(4N), —2N < k
< 2N. Straightforward calculations give

(=D 9 (if(2k +1))

R (i 2k + DIAN)) = S — o {2k +1)7/(20)}

and
(—D*tg (ft (2k +1))
27N cosh { 2k + 1) nt/2}

R(2k+1Dt/(4N)) = —

Applying the residue theorem and letting N tend to oo, we find that

(12.4) lim N | fy(2)dz =
2 (=D {o(iBREk+1) — (=i (2k+1))}
i cosh { 2k +1) nt/2;

ks (= 1F {6 (Bt 2k +1) — ¢ (=Bt Qk+1)))
v cosh {2k + 1) nt/2} '

Putting ¢ = o/p in (12.4), we readily deduce (12.3).

Next, we show that Entry 12 is a corollary of the preceding entry.
Let ¢ (z) = '™, where n > 0. We see at once that (12.3) then reduces to
(12.1). It is easily seen that the hypotheses on fy (z) are satisfied on the
two sides of C in the upper half-plane. In the lower half-plane on C, N f  (2)

tends to O boundedly if and only if # < 7/(2«), which is precisely a hypo-
thesis of Entry 12.

il

ENTRY 13. Let «, B > 0 with «f = =%, and let n be an integer greater
than 1. Then

an -1 o0 an -1 B

i S U R G i el

K
=
D18

1 €

=
il
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Entry 13 is stated without proof by Ramanujan in [60, p. 269], [61,
p. 190]. The first published proof known to the author is by Rao and Ayyar
[63]. Malurkar [49] and Hardy [29], [32, pp. 537-539] gave proofs shortly
afterward. Later proofs were found by Nanjundiah [52], Lagrange [44],
Grosswald [25], and the author [8, equation (11.10)], [12, Proposition 2.6].

COROLLARY 1.

i k> 1
2™ — 1 504

COROLLARY 11.
i k° 1
Ze™ — 1 264

COROLLARY 1ii.
co k13 1
kgl eznk -1 B ﬂ

CoOROLLARY 1v. If n is a positive integer, then

k4n+1

2 B4n+2
13.1 = .
(3.1 kgl e?™ —1  8n+4

If = f = mandnisodd, then Entry 13 reduces to (13.1) if n is replaced
by 2n + 1. Corollaries i-iii are special instances of Corollary iv. Corollary iii
was communicated by Ramanujan in a letter to Hardy [61, p. xxvi]. Sandham
[66] also proved this special case. Aiyar [2] and Ling [48] established Cor-
ollaries i-iii. Corollary iv was proven first by Glaisher [22] in 1889. In
addition to the authors who have proven Entry 13, Corollary iv has also
been established by Krishnamaghari [43], Watson [73], Sandham [67],
and Zucker [76].

As usual, let ¢, (1) = ). d". It is easy to show that
din
o0 o0 dv
(13.2) Y o, (k)e™™ = ,
k=1 d=1 e?” — 1

where y > 0. Thus, Entry 13 may be rewritten in terms of the left side of
(13.2). In this form, Entry 13 perhaps was established before Hurwitz’s
thesis [34], [35] in 1881. Later proofs were found by Koshliakov [42],
Guinand [26], and Chandrasekharan and Narasimhan [18].
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ENTRY 14. Let a, f§ > O with «ff = =%, and let n be a positive integer.
Then

2n—1 o0 2n—1

ey e 22 gy T k; 1B S R

Entry 14 has been established by Malurkar [49], Nanjundiah [52],
and the author [12, Proposition 4.7].

CorOLLARY OF ENTRY 14. If n is a positive integer, then

(142 5 =1 2k + )™t

ko cosh {(2k +1)7/2}

If « = 8 =mx and n is even in (14.1), then (14.1) reduces to (14.2)
upon the replacement of n by 2n.

This corollary was, in fact, first established by Cauchy [17, pp. 313, 362].
Ramanujan stated (14.2) as a problem in [55]. In addition to the authors
who have proved Entry 14, (14.2) has been established by Rao and Ayyar
[64], Chowla [19], Sandham [67], Riesel [65], and Ling [48].

ENTRY 15. Let o, B > O with af = n?/4. Then

(15.1) 2 g: y(n)tan™t(e”*) + 2 i ¥ (n) tan~! (e™#")
n=1 n=1
_ i £ () sech (an) N § . (1) sechn(ﬁn) _ % '
n=1 n=1

Proof. A proof of the rightmost equality in (15.1) has been given by
Malurkar [49], Nanjundiah [52], and the author [12, Proposition 4.5].
The leftmost equality in (15.1) follows from

Si X(} E?ﬂljfzg = 2 fi zﬁf}e’

ny Z (—l)k e—any
k=0

_L % % x(nk)

k=1 n=1

2 i x (k) tan™! (e™®),
k=1

Il

where y > 0.
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COROLLARY OF ENTRY 15. We have
Y zmtan”! (e”™/?) = n/16 .
n=1

The corollary follows trivially from (15.1) upon setting o = f = x/2.
Rao and Ayyar [64] have also established this result. Chowla [19] has

proved some formulas similar in appearance to (15.1).

Let m and n be nonnegative integers. Then

ENTRY 161.
®sin®Flx I'(m+1/2) T'(n+1/2)
——— cos“™xdx =
X 2I'(m+n+1)
0
o0 sin2”+2x
=J ——— cos*"x dx .
X

0

Proof. The first equality can be found in [23, p. 457], but since the
second is not in [23], we give a brief proof. (A proof of the first equality
can, in fact, be given along the same lines.) Let the integral on the right
side above be denoted by 7 (m, n). We induct on m. For m = 0,

r(1/2) rmn+1/2)

1Om = —roiy

by [23, p. 446]. Proceeding by induction, we have
Ilm—-1,n) —I(m—1,n+1)

I(m,n) =
I'(m—=1/2) I’ (n+1/2) I'(m—1/2) T (n+3/2)
- 2I' (m +n) - 2 (m+n+1)
r(m+1/2) T (n+1/2)
- 2 (m+n+1) ’

and the proof is complete.

Let n and p be nonnegative integers. Then
" sin*" 1 Fh+1) I'(n+1)2

sin“""'x cos (2px) dx = (—1)? \/71 ( ) I'( /2)
X 2 I'n—p+1) T (n+p+1)

ENTRY 1611.

0
0 sin2"+2x
= _—;E— COS (ZPX) dx .

0
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Proof. We prove the first equality; the proof of the second is virtually
the same. Let I (n, p) denote the integral on the left side above. For p = 0
the proposed formula is true by Entry 16i. Thus, we assume that p > 0
for the remainder of the proof. We induct on n. For n = 0, it is easy to show
that 7(0, p) = 0 [23, p. 414], which agrees with the proposed result. Using
the identities 2 sin®> x = 1 — cos (2x) and 2 cos (2x) cos 2px) =
cos {2(p+1)x} +cos{2(p—1)x}, we find that, by the induction
hypothesis,

1 1 1
I(n,p) = El(n—l,p) - ZI(H—LIH-U - Z-’(”*LP—D

RGNE
== I'(n) I'(n—1/2) IT'(n—p) T'(n+p)

1 1
— +
2 (n—=p—-1)TI'(n+p+1) 2F(n—p+1) I'(n+p—1)

(=D /rT(n+1) T (n+1/2)
 2T(n—p+ DT (n+p+1)

after several applications of the functional equation of I' (2).

ENTRY 17i. Let o, f,n > 0 with af = 2. Suppose that n/(20) is
not an integer, and let m = [n/(2«)]. Let p be real. Then

1

(17.1) o {5 + f: cos” (ak) cos (ocpk)}

nn! 1
B 2”+1{F{1/2(11+p) + 1} ' {%m—p) +1}

o 1
* 3 Foesem i rRe e

1
i r{Y%m+p+pk) + 1} T {h(n—p—pk) + 1}>}'

Proof. By Stirling’s formula, the right side of (17.1) converges absol-
utely for n > 0.

Apply the Poisson formula (6.1) with S (x) = cos” (ax) cos (apx),
a =0, and b = 7/(2x). After a simple change of variable, we find that




3

1 m
+ > cos” (ak) cos (apk)

2 k=

(17.2)

0

/2 5 @® n/2
= —J cos"t cos(pt)dt + — ), J cos"t cos (pt) cos (Bkt) dt .
o % p=1
4 _

Now for v > 0 and arbitrary a [23, p. 372],

/2
(17.3) J cos’ " 1x cos (ax) dx

0
nl(v+1)

VI { Yy +a+ D)} I {Yy(v—a+1)}’

If we calculate all of the integrals in (17.2) with the aid of (17.3), we arrive
at (17.1) forthwith. ‘

EnTRY 17i1i. Let o, f,n > 0 with «ff = n/2. Suppose that n/(2x)
is not an odd integer, and let m = [n/(2x)]. Let p be real. Then

(17.4) o i ¥ (k) cos” (ak) sin (apk)

B nn! i o 1
Tz L AN PO i p Bl + L) T Va(ntp—BK) + 1)
1
CT{Y%m+p+Pk) + 13T { Ya(n—p—Bk) + 11|~

Proof. As before, the series on the right side of (17.4) converges
absolutely for n > 0.

Apply the Poisson formula for sine transforms (9.2) with f (x)
= cos” (ax) sin (apx), a = 0, and b = 7n/(2x). After a simple change of
variable, we find that

m

(17.5) >y (k) cos" (ak) sin (apk)

k=1

1 0 1!/2
=— Y x (k)J cos"t sin (pt) sin (Bkt) dt .
& p=1
0
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If we calculate the integrals in (17.5) with the use of (17.3), we deduce
(17.4) immediately.

; COROLLARY 1 oF ENTRY 17i. Let a = n/(n+ j), where n and j are
{ positive integers of opposite parity. Let m = [r/(22)]. Then

1 m Jn T (n+1/2)

2 k=1 20n! '

(17.6)

Proof. In Entry 17i replace n by 2n and let p = 0. Let 2 f, («) denote
the infinite series on the right side of (17.1), 1.e.,

= 1
fal) = k=zl IF(n+1+knjo) T (n+1—knfa)

Since f,(n/(n+ j)) = 0, we see that (17.1) reduces to

[1 m . n /2n
oc12+ Z cos (ock)} W(;z)’
which can be transformed into the desired result by the use of Legendre’s
duplication formula.
In fact, Ramanujan claimed that (17.6) is valid for 0 <o <n/(n+1),
ie., f,(0) =0, 0 <o <7n/(n+1), provided that n/(2x) is not an integer.
(Of course, for oo = 0 the result is false.) In general, f, () does not vanish

for all « in (0, 7/(n+1)), as the following counterexample shows.
Letn = 1 and put f () = f, (2). Let « = 27n/5 < n/2. Then

* 1

-1 I'(2+5k/2) I'(2—-5k/2)

® 1

,;1 (1 —(5k/2)%) (5k[2) I (5k[2) [ (1 —5k[2)
2 Z sin (Snk/2)

st Sy (1= (5k/2)%) k

1 2 (—1)*

=0

ST (1= {52k +1)2}3) 2k +1)

The latter series can be evaluated by the residue theorem. Let

f@nf5) = )

k

sec (nz)

h(z) =
(2) {1 —-(52%}z"’

L’Enseignement mathém., t. XXVI, fasc. 1-2. 3
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which has simple polesatz = 0, 4+ 1/5, and (2k + 1)/2, where k is an integer.
Routine calculations give

R(0) =1, R(1)5 = — %see(n/S) = R(-1/5),

and
2 ( . 1)k+1

(1 — {5Qk+1)23?)(2k+1)

R((2k +1)/2) = n

Integrate 4 (z) over a positively oriented square C, with center at the origin
and horizontal and vertical sides of length 2n, where » is a positive integer.
As n tends to oo,

Jh(z)dz = 0(1).

Hence, applying the residue theorem and then letting » tend to oo, we
find that

1
f(2n)3) = T (1 —sec(n/5)) # 0,

which disproves Ramanujan’s claim.

CoOROLLARY 2 OF ENTRY 17i. Let ¢ = m/(n— j), where n and j are
integers of opposite parity such that » > 0 and 0 <j <<(n—1)/2. Let
m = [n/(2«¢)]. Then

(17.7) o {% + i cos2” (ock)}
_Jrr(n+1)2) : 2 (n))>
B 2n! * Fn+l+nfo) T (n+1—nfa) |

Proof. In Entry 17ireplace n by 2n and let p = 0. After some manipula-
tion, we find that

ﬁr(n+1/2){l N 2 (n!)>?

I'(n+1+n/a) I'(n+1~mn/a) +2(n)" g, (OC)} ’




where

® 1

gn(®) = =22 T(n+1+knjo) I (n+1—knfa)
For « = n/(n—j), i< @m-1)2, g,(0) =0, and so the proof is
complete.
Ramanujan, in fact, claimed that (17.7) is true for nn <o L 2n/(n+1),
ie,g, (@) =0,n/n <o <2n/(n+1), provided that 7/(20) is not an integer.
Again, this claim is false, in general, and we give a counterexample.

Let n = 3 and put o = 2n/5; so n/3 < « < w/2. Then

oo 1
gs (2n/5) = k; [ (4 +5k/2) T (4 —5k[2)

B (__1)k
5n 524 P(Qk+1)2)2k+1)’

where P (z) = (9—252%) (4—25z%) (1—25z%). This series can be evaluated
by the same method as used in the previous counterexample. Accordingly,

we find that
1{4-./5 44
2m)5) = _ T Lo,
g5 (2n[3) 10{ 45 2079n} a

which disproves Ramanujan’s claim.

EnTRY 18. Let a,, b,, Pn» 9n Pn and Q, be complex numbers with
ab, # 0.Let x and y be complex variables with xy # 0. Let

_ b B Q.
¢(x) = Z Py — G,X and ¥ () = ; 4y — bpy
Then
P, Dny Q, gnX
18.1 ) = ’
18 ¢y 0) gpn-anx (a X> i ;qn bnqu(bny)’

where it is assumed that at least one of the two double series on the right
side of (18.1) converges absolutely.

Proof. Without loss of generality, assume that the latter double series

on the right side of (18.1) converges absolutely. Inverting the order of
summation below by absolute convergence, we have
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P, Pny qix
> vt + 2 o[
n Pn —dp X AnX, - bky bky

P P
Z n Z Qka X + Z bky
k

I

7 Dn — 4,X F a,qx — byp,y dr — bky n bpny — a.qix
Qkanx n kaky (pn —‘ClnX)
anx)

D)

n Pn — ApX

P K
= 2 — 2 2 = ¢ ()Y ().

W Dn— 4 X T qp — by

a,qpx — byp,y (qx — byy) (byp,y —a

Despite the simplicity of the above result, Ramanujan found many
interesting applications of it, as we shall see in the sequel. However, each
of the following corollaries may be alternatively established by using
partial fraction decompositions directly and not employing Entry 18.
The following entries are valid except for obvious singularities which we
shall not state.

CoOROLLARY 1 oF ENTRY 18, < 7.

Then for n, x, and y complex, with x/y not purely imaginary,

cos (Onx) cosh (¢pny)

sin (nnx) sinh (nwny)

3 R (=D cos (k¢) cosh (kOx/y)
= 1+ 2mnxy ,;1 (K2 + n2y?) sinh (zkx/y)

N l)kk cos (k@) cosh (k¢y/x)

— 2nn? Xy ;Zli (k 2) sinh (nky/x)

n’n’xy

Proof. For | 9| [41, p. 377],

TINX COS (an)

2 Z (—1)* cos (k@)-

sin (mnx) B = —w k(nx—k)
k#0

Similarly, for [ 1) | <7

nny cosh (¢ny)  imny cos (i¢ny) 2 i (—1)* cos (ko)
sinh (zny)  sin (inny) Y = k(iny—k)

k#0 A

Define the functions ¢, f, ¥, and g by
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nnx cos (Onx) 4 1
¢ (x) = —W 1 f )
and
b G) = nny cosh (¢ny) =g —1.

sinh (nny)

Thus, in the notation of Entry 18, P, = n’x? (—1)* cos (k0), p = - k2,
a, = —kn, Q= —n*y*(—1)cos (kd), ¢ = — k% and b, = —ikn.
Applying Entry 18, we find that, for \0 ], | ¢ l < 7 and y/x not purely
imaginary,

n?n?xy cos (Onx) cosh (pny)

- — () - 1
¢ XY (y) = sin (anx) sinh (zny) fx)—g@) +
= —fX)+1-g0( +1
) ®  (—=1)k cos (kB) cosh (k¢y/x)
oy k=Z_:OO (knx —k?) sinh (nky/x)

) ©  (=1DFk cos (ko) cosh (kOx/y)
= XY ) T Z i) sinh (nkxy)

k=—
k#0

b

which yields the desired result after some simplification.

COROLLARY 2 OF ENTRY 18. Let 0 and ¢ be real with | 0|, | ¢ | < /2.
Let n, x, and y be complex with y/x not purely imaginary. Then

7 sin (Onx) sinh (¢pny)
4n? cos (nnx/2) cosh (nny/2)
, w  x(k)sin (k¢) sinh (k0x/y)
=V L L0 505y cosh (whx/(29))
x (k) sin (k) sinh (k¢y/x)
y  k(k*—n®x?) cosh (nky/(2x))

(18.2)

M s

+ x?
k
Proof. The set of functions sin { 2k+1) 0}, 0 <k < w0, is orthogonal
and complete on [—7/2, n/2]. An elementary calculation gives the Fourier

series of sin (Onx) with respect to this orthogonal set. Accordingly, we find
that, for | 0 | < 7/2,

500 = sin (Onx) 2 i (—1)**1 sin {(2k+1)6}.

x cos (nnx/2) T x = o nx + 2k + 1
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Similarly, for | ¢ | < n/2,
sinh (¢ny) _ sin (igny)
y cosh (nny/2) B iy cos (inny/2)
28 (—=1DFsin {2k +1) ¢}

).

Y koo iny + 2k + 1

o (y) =

2
Apply Entry 18 to ¢ (x) and ¥ () as defined above. Then P, = — (—1)**!
X

.
sin { @k+1)0), p, = 2k+1, @, = —n, O = — (=1 sin { @k+1) ¢ 1,
my

g, = 2k+1, and b, = —in. A straightforward application of Entry 18
yields (18.2) for | 0|, | ¢ | < m/2. By continuity, (18.2) holds for |6
] ¢ | < /2.

M b

COROLLARY 3 OF ENTRY 18. Let 6 and ¢ be real with | 0|, | ¢ | < /2.
Let n, x, and y be complex with y/x not purely imaginary. Then

7 cos (Onx) sinh (¢ny) B by
4 sin (nnx/2) cosh (nny/2)  2x

)y O (—1)*1sin {2k +1) ¢ } cosh { (2k +1) Ox/y }
LA 2k +1) { 2k +1)* + n2y? ) sinh { 2k + 1) nx/(2y) }
, . o (—1)"" cos (2k0) sinh (2k¢y/x)

L Gl = n?x?} cosh (nky/x)

(18.3)

Proof. We first calculate the Fourier series of cos (Onx) with respect
to the complete orthogonal set cos (2k0), 0 <k < o0, on [—m7/2, =/2].
Accordingly, we find that

cos (Onx) 2 i (—1)* cos (2k0)
x sin (mnx/2) @x 22, nx + 2k
cos (Onx) 5
Define ¢ (x) = — g (x), where g (x) = 2/(nnx*). Thus,

x sin (nnx/2)

2 i

in the notation of Entry 18, P, = — (—1)* cos (2k0), p, = 2k, and q,
X |

= —npn, where k # 0. ]
Let i () be as in the previous corollary. Thus, by Entry 18, for | 0|,
| ¢ | < n/2 and y/x not purely imaginary,
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cos (Onx) sinh (¢ny)
xy sin (znx/2) cosh (nny/2)

— Yy () g )

n (—1)* cos (2k0) sinh (2kpy/x)
= f G0+ L i+ 2K) cosh (aky/)

k#0

o0

2in (—1)¥*1 sin {(2k+1) ¢ } cosh {(2k +1) Ox/y }
n—x k=z_w (2k +1) (iny + 2k + 1) sinh { (2k +1) nx/(2y) } ’

0

(—1)Fsin {2k +1) ¢}
kzz_oo (iny + 2k +1) 2k +1)*
diny 2 (=1fsin {(2k+1) ¢}

2x? kzz_oo iny + 2k+1

X
1 1
V@t 1E R
© (=DFfsin {Rk+1) ¢}
= - g(X)lﬁ(y) -+ 7'52)62 k;o (2k+1)2

2¢
= "g(x)kb()’)"*" 2
X

4iny
nix?

(18.5) [y =

= —g®y Q) +

In this last step, we have used the Fourier series of ¢ with respect to the
complete orthogonal set sin{ (2k+1)¢}, 0 <k < o0, on [—n/2, n/2].
If we substitute (18.5) into (18.4), we obtain (18.3) for |6|, | ¢ | < /2
after some simplification. By continuity, (18.3) is valid for | 8|, | ¢ | < =/2.

ENTRY 19i. We have

(19.1)

n’xy cot (nx) coth (ny) = 1

n coth (nnx/y)
+ 2nx
g ngl n2 + y2

2 2

® coth
— 2nxy Y, ! (nny/x) :
n=1 n—=Xx

We have stated Entry 19i with no hypotheses because, in general, the
two series on the right side of (19.1) do not converge. Ramanujan evidently

used Entry 18 to derive Entry 191, and so we formally derive Entry 19i
in this way. From (1.9), we have

2 1
(19.2) nx cot (nx) = 1 +x* )

2
n= -~ o0 nx — n
n*0
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and

s 1
) coth =1+ — e,
) (my) y n:zw T iny
n#0
Apply Entry 18 to ¢ (x) = nx cot (nx) — land y () = ny coth (ny) — 1.
Ignoring the fact that the resulting two series on the right side of (18.1)
diverge, we arrive at (19.1) quite easily.

ENnTRY 19ii. Let x and y be complex numbers such that x/y is not
purely imaginary. Then

n?xycsc (nx) csch (ny) = 1

2 (—=1)"n csch (nnx/y) 2. (=1 n csch (zny/x)
2 -2 .
+ nxy ngl n2 + y2 ﬂ:xy nzzl n2 - x2
Proof. From [75, p. 136],
(9] ( ___ 1)71

I

$(x) =nxcsc(nx) —1 =x* )

2
ne o NX — R

n#0
and
_ 2 < (—1)
W(y) =myesch(my) =1 =y* ) —5——.
nm o M- — inX
n#0
Apply Entry 18 with ¢ (x) and ¥ (») as defined above. Thus, P, = (—1)"x?,
p, = —n% a, = —n, 0, = (—1)"»* q, = n* and b, = in. Hence,

()Y (y) = x* % (—1)”2Jnny csch <@> —1}
. nx —n l X X
n#0

o0 (—1) Tinx <ninx>
4+ 2 E, 7 csc|{——) —13%.
Y ne—e NZ —iny | y

n¥0

The completion of the proof is straightforward, and we omit it.

ENnTRY 19iii. Let x and y be complex numbers such that y/x is not
purely imaginary. Then

Z— tan (nx/2) tanh (ny/2)

_ %", tanh {(2n + 1) nx/(2y) } tanh { (2n + 1) ny/(2x)}

S n+1){2n+1) +p?) T n:zo Cn+D{Q2n+1)*—x*}




Proof. From [23, p. 36],

2 «© 1

o (x) = %tan (nx/2) = — — Z

X por 20 + 1 + X

and

1 2i 2z, 1
Y (y) = — tanh (ny/2) = — Z
Y Y o

Zo2n+1+iy’

where the prime ' on the summation sign on each right side above indicates
N

that the sum is to be interpreted as lim > . Apply Entry 18 to
N—-ow n=-—N

¢ (x) and ¥ (y) as defined above. Thus, P, = —2/(nx), p, = 2n + 1,
a, = — 1, Q, = 2i/(ny), q, = 2n + 1, and b, = — i. Hence,
2 2 tanh {(2n+1) ny/(2x)}

e N Tik s Y T g

2i 2 tanh {(2n+1)7x/(2y)}

+— )

X 4=—o (2n+1)(2n+1+iy)

and, after a little simplification, the desired result follows.

ENTRY 19iv. Let x and y be complex numbers such that y/x is not
purely imaginary. Then

% sec (nx/2) sech (ny/2)

2z (n)yn sech { nnx/(2y) } 2 x(m)n sech { mny/(2x) }
= Z nZ 4 2 Z 2

= y ey n? — x?
Proof. From (1.2),

(—1)
n=—w 20+ 1 + x

¢ (x) = sec (nx/2) =

and

2 2 —1)"
(19.3) Y (y) = sech (ny/2) = - =Z_ > (+ . )+ 5

Apply Entry 18 with ¢ and  defined as above, and we readily obtain the
desired result.
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ENTRY 19v. Let x and y be complex numbers such that y/x is not
purely imaginary. Then

% cot (nx/2) sech (ny/2) = —

x (n) coth { nnx/(2y)} . i sech (nny/x)

n2 + y2 n=1 (271)2

)

n=1

Proof. From (19.2),

b0) =cot () — — =y
x) =cot (nx/2) — — = — —
nx 2 =2, nx/2 — n?
n#0

Apply Entry 18 to ¢ (x) given above and to ¥ (y) given by (19.3). Hence,

x 2 sech (nny/x)

>,

e 2
2n , -~ nx/2 —n
n#0

2 2 (—1)" i (2n + 1) x> 2iy
+ — 4 cot + —
T op=— 20+ 1 4 iy 2y (2n+1) nx

4x 2 sech (nny/x) 2

I

¢ xX) ¥ (y)

- - — = sech (my/2
T n; (2n)* — x*  @x sech (my/2)
4y i (—1)"coth { (2n+1) nx/(2y) }
T o0 (2n +1)* + y?
4 2 (=1
+ = X 1y :
X p=— o 20 4+ 1 + iy on + 1

The last series above reduces to twice Gregory’s series for n/4. Hence,
after a little simplification, the above reduces to the desired result.
After Entry 19v, Ramanujan remarks that similar formulas can be

derived for tan (nx/2) coth (ny/2) and sec (nx/2) coth (ny/2).

ENTRY 20i. We have

* n coth (nn)

1222 cot (nz) coth (nz) = 1 —4nz* Z e ey e
P

Note that if we set x = y = z in (19.1), we obtain the above equality.
However, as previously observed, the two series on the right side of (19.1)
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do not converge for x = y. Nonetheless, if we calculate the partial fraction
expansion of n? cot (nz) coth (nz)/z, we readily deduce Entry 20i. Because
the calculation is quite routine, we omit it.

CoroLLARY OF ENTRY 20i. We have

2, , cosh (nz\/2) + cos (nz\/2)
cosh (Tcz\/2) — cos (nz\/2)

*  n coth (nn)
=1+ 4nz* —_—
+ 4nz n; —

[

Proof. 1In Entry 20i replace z by e"/*z. We see that we must calculate
i cot (me™/*z) coth (me™/*z)
cosh (mz (1 —i)/\/éj cosh (mz (1 +i)/\/2—)
sinh (nz (1 —1)/4/2) sinh (nz (1 +1)//2)
cosh (nz\/?) + cos (nz\/E)
- cosh (nzﬁ — cos (nz\/2_) .

The desired equality now follows.

ENTRY 20ii. We have

2 (=1 h
n?z® ¢sc (nz) esch (nz) = 1 — dnz* Y (=1 4n CSC4 (zn) )
n=1 n - Z

Proof. Let x = y = z in Entry 19ii, and the result follows.

COROLLARY OF ENTRY 20iii. We have

272 0 n
_2_7c z — 14 dnzt Y (=1)'n csch (nn)
cosh (nz\/Z) — cos (nz,/2) ne1 n* + z

Proof. 1In Entry 20ii replace z be e"/*z. Use part of the calculation

in the proof of the Corollary of Entry 20i, and the desired result easily
follows.

ENTRY 201ii. We have

T 3 (2n+1) tanh {(2n+1)7/2 }
52 tan (nz/2) tanh (nz/2) = nZO it D) — 7
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Proof. Put x = y = zin Entry 19iii, and the result readily follows.

COROLLARY OF ENTRY 20iii. We have

n cosh (nz/\/ﬁ — CoS (nz/\/2_)
8z% cosh (nz/\/g + cos (nz/\/?)
B Z (2n + 1) tanh { (2n + 1) n/2}

M 2n+1D* + z*

Proof. Replace z by e"/*z in Entry 20iii. The calculation that is needed

1s precisely of the same type as that given in the proof of the Corollary
of Entry 20i.

ENTRY 20iv. We have

4 4

0 3
;fsec (r2)2) sech (n2)2) = 3 g (n) oo (w2
o n* —z

Proof. Let x = y = z in Entry 19iv, and the result follows forthwith.
CorROLLARY OF ENTRY 20iv. We have

/4 B i n sech (nn/2)
cosh (nz/\/Z—) + cos (nz/\/2—) n=1 R + z*

Proof. The corollary follows from Entry 20iv upon the replacement
of z by "%z and from the calculation in the proof of Entry 20i.

ENTRY 21i. Let o, f > 0 with «ff = =n?

, and let n be any nonzero
integer. Then

1

k—2n 1
{ ((@2n+1) + Z —}

k—Zn—l
= (—.3)_"{ (@2n+1) + Z _——T}

! BZ +2-2k
_ 22n 1)k “ n+]—k3k
2 (=D (2k)' Gni2—21 "

where B; denotes the j th Bernoulli number.
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Entry 21i is perhaps the most well-known result in Chapter 14. For
a« = B = m and n odd and positive, the theorem is first due to Lerch [45].
A proof of the more general Entry 21i was first given by Malurkar [49].
Other proofs of the aforementioned special case or of the full result have
been given by Grosswald [24], [25], Smart [71], Katayama [37], [40], Riesel
[57], and the author [11], [12]. Several other authors have established
transformation formulas from which Entry 21i readily follows. Thus,
although Entry 21i was not explicitly stated by them, Guinand [26], [27],
Apostol [4], Mikolas [51], Iseki [36], Chandrasekharan and Narasimhan
[18], Glaeske [20], [21], Bodendiek [15], and Bodendiek and Halbritter [16]
have essentially proved Entry 21i. For a more detailed discussion of this
formula, see the author’s expository paper [7]. Lastly, note that forn < —1,
Entry 211 yields Entry 13 (with # replaced by —n).

ENTRY 2lii. Let «, f > 0 with «af = n?/4. Let n be any integer. Then

> h (ak 2 h (S
DORICEC NN W

k=1

T E E,, _
_ = z ( _ 1)k 2k 2n—2k an_kﬁk ,
4 = (2k)! (2n —2k)!

where E; denotes the jth Euler number.

Note that the latter equality in Entry 15 is the case n = 0 of Entry 21ii.
Also observe that Entry 21ii reduces to Entry 14 when n < 0. (The para-
meters 7, o, and f# must be replaced by —n, «/2, and f/2, respectively, to
obtain Entry 14).

Proofs of Entry 21ii have been given by, firstly, Malurkar [49] and then
by Nanjundiah [52] and the author [12, Proposition 4.5].

For Res > 0, let

(21.1) L(s) = i x(nyn=s .

Note that L (s) is a Dirichlet L-function and so can be analytically continued
to an entire function.

ENTRY 2liii.  Let «, f > 0 with af = 7%, and let n be any integer.
Then




46 —

= I (e —

(—1)" ﬁ—n+1/2 0 1
DY k; k*" cosh (Bk)
1 z (_ l)k E2k BZn—Zk

)

4 5 2% (k) (2n—2k)!

A L(2n) i 1)}

n—kﬂk+1/2 .

The first published proof of Entry 2liii was given by Chowla [19,
equation (1.2)]. The author [12, equation (3.20)] has also given a proof.
(Unfortunately, formula (3.20) contains an error; replace (8/8)* by g¢* 22~ 4k
at the end of (3.20).) Entry 2liii also follows from results of Katayama
[38], [39].

ENTRY 22i. Let x and y be complex numbers with y/x not purely
imaginary. Then

cosh {=n (x+1)\/2} + cos {m(x —y) \/2}
(22.1) nzxy{ — cosh {n(x — y)\/2} —cos{n(x+y)\/2}}
{ cosh (nx\/2) — cos(nx\/Z)} {cosh (ny\/v — cos(ny\/v}
n coth (nnx/y) A Coth (nny/x)
12_:1 Y4 xt

og]

= 2 + 4nxy’
Z‘l n* + y*

Proof. Let
zf (z) = n* cot (nzx) coth (nzy) and zg(z) = 7n* cot (nzy) coth (nzx).

If we expand f (z) and g (2) into partial fractions, we obtain

xy{f(@D+9@} ==

0

X n coth nny/x n coth (nnx
+ dnx3yz ) ( y‘{ ) + dnxy’z Y ( iy)
n=1 —n =1 Yzt —n

If z = 1, the above becomes

(22.2) n?xy { cot (nx) coth (ny) + cot (ny) coth (nx)} = 2
n coth (nnv/x) 2 n coth (nnx/y)

TR L e P




Replace x by ¢"/*x and y by ¢"/*y in the above. The right side of (22.2)
then becomes the right side of (22.1). On the left side of (22.2) we have

cosh (a —ia) cosh (b +ib) N cosh (b —ib) cosh (a +ia)
sinh (a —ia) sinh (b +ib) sinh (b —ib) sinh (a +ia)
n’xy {F(a,b) + F(b,a)}

= Py

G (a, b)

(22.3)  w2xy

where a = nx/\/i b = ny/\/i,

F(a,b) = cosh (a —ia) sinh (a +ia) cosh (b +ib) sinh (b —ib) ,
and
G (a,b) = sinh (a —ia) sinh (a +ia) sinh (b —ib) sinh (b +ib) .

Now,
1 ) ..
F(a,b) = 1 {sinh (2a) + isin(2a)} {sinh(2b) — isin (2b)},
and so

(22.4) F(a,b) + F(b,a) = % { sinh (2a) sinh (2b) + sin(2a) sin (2b) }

- %(cosh{?_(a +b)} —cosh{2(a—b)} +cos{2(a—Db)}

—cos{2(a+b)}).
Also,

(22.5) G(a,b) = % {cosh (2a) — cos(2a)} {cosh(2b) —cos(2b)} .

If we substitute (22.4) and (22.5) into (22.3), we find that (22.3) is transformed
into the left side of (22.1). This completes the proof.

Entry 22i in the Notebook is slightly in error. Ramanujan has replaced
the numerator of the left side of (22.1) by

cosh {7 (x +y) +/2} cos {m(x—y)/2}
—cosh{n(x——y)ﬁ} cos{n(x+y)ﬁ}.

It also may be remarked that formally (22.2) can be derived from Entry 19i.

ENTRY 22i1. Let n > 0. Then

0 cos (2nx) dx °° x (k) k
Jo cosh (n\/;) + cos (n\/5 =2 k=1 cosh (nk/2) ¢

— nk2

(22.6)
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Proof. Let

1
/@) = cosh (n\/5 + cos (;\72;5 '

We expand f into its partial fraction decomposition. There are simple
poles at z = +i(2k+1)%/2, —o0 < k < co. Since
(=1D*Qk+1)

i 2 _ _ . 214"
R(i(2k+172) = — (s Daa] R(—i(2k+1)%/2),

we readily find that

(22.7) f(2) = +4(2),

2 2 (—=1*(2k+1)°
n Sy cosh {2k + 1) 7/2} (2% + (2k + 1)*/4)

where g (z) is entire. By the same argument as that used in the proof of
Entry 4, g (z) = 0.

Letting z = x, we multiply both sides of (22.7) by cos (2nx) and integrate
with respect to x over [0, c0). Inverting the order of integration and summa-
tion by absolute convergence and using [23, p. 406]

% d
COSZ{@TX =£e“ab’ a>0, b>0,
o X" +b 2b
we find that
” 2 2 k k3 % o3 (Inx) d
f (x) cos (2nx)dx = — Z 7 (k) Z(m? X
0 n ,=1 cosh (nk/2) ), x* + k*/4

=2 i _xB)k e—nk2,
w=1 cosh (nk/2)
which completes the proof.

The factor 2 on the right side of (22.6) is missing in the Notebook.
The integral evaluated in (22.6) is very similar to integrals evaluated by
Ramanujan in [59], [61, pp. 59-67]. Ramanujan claimed that the next entry
is a corollary of Entry 22ii. We cannot show this and so proceed from |

scratch.

COROLLARY OF ENTRY 22ii. Let o, f > O with af = n°/4. Then

- x (n)
22.8 — —
(228 n=z1 n{cosh\/an+cos\/an}

< x (n) n
t L n cosh (nn/2) cosh? (Bn?) 8

n=1
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Proof. Let N be an even positive integer. We shall let N tend to oo,
but we shall further restrict N be requiring that N? remain at a bounded
distance from the numbers (2n+ 1) «/n*, where n is a positive integer. Let

1
z { cosh (nNz) + cos (nNz)} cos (Zﬁszz—) '

v (2 =

Elementary considerations show that f (z) has simple poles at z = 0,
at z = (2n+1) (+1+i)/2N), where n is an integer, and at z =

+ \/ (2k+1) o/(N7), where k is an integer. Straightforward calculations
yield R (0) = Y2,
R((2n+1)(£140/(2N))
(— 1y
~ n(2n+1) cosh {(2n +1) /2 } cosh { 2n +1)°f}

and
R( £/ (2k+1) af(Nm)
(_l)k-i-l
T 2k +1) {cosh\/m—l— cos \/Ek—ﬁ‘}; '

Let C denote the positively oriented rhombus with vertices 4+ 1 and + i.
Hence, employing the residue theorem and letting N tend to oo, we find that

(22.9) lim i fa(2)dz =~;—

N - T
C

T o,=C, (2n+1) cosh {(2n+1)n/2} cosh {(En +1)*p}
2 o0 (_1)k+1

)

T =T (2k+1) {cosh \/ (2k+1) o + cos \/ 2k +1)a}

+

By the definition of fy and the choice of N, it is easily seen that the limit

on the left side of (22.9) is zero. A slight rearrangement of (22.9) yields
(22.8), and we are done.

ENTRY 22iii. Let o, f > O with af = 473, and let y denote Euler’s
constant. Then

L’Enseignemgnt mathém., t. XXVI, fasc. 1-2. A
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0 2,37 n(cosh \/om — COS \/ocn) 4
* 1 *®  coth (nn
+ i + Z 27n 2( ) ‘
48n Ty n(@™-1) 2 nE™ =1
Furthermore,
(22.11) y ! L Log (4 — ™ + Log I'(3/4)
. - = —1Lo - — 0 .
Lope@m—1y 4 2V T 8

In the Notebook, formula (22.11) contains a misprint; Log " (3/4)
1
1s replaced by 7 Log I" (3/4).

Proof. We first prove (22.11). A direct calculation gives

@ 1 o0
(22.12) Z R 0 = — Log [] (1—¢*"
n= — n=1
where ¢ = e~ ". Now from [75, p. 488, problem 10],
* 2kk' K>
(22.13) [T -¢° = 31,
n=1 nq

where k, k', and K have their standard meanings in the theory of elliptic
functions. Here, k = k' = 1/\/5 and K = ©3/2/(2I'? (3/4)). (See [76], for
example.) Thus, (22.12) and (22.13) yield

i 1 1 0 n3/2 i
= — —Lo - —
Lon@™—1) 6 21234 12

_ %Log (4/) + Log I'(3/4) — /12,

as desired.

We now prove (22.10). Let N = n + ', where n is a positive integer.
We shall let N tend to oo through a sequence such that N%n?/o remains at
a bounded distance away from the positive integers. Let

coth (nNz) cot (rN z)
fN (Z) = ( BN2z2 1)

The function fy(z) has simple poles at z = +./ak (1+i)/2nN), at
z = ik/N, and at z = ik/N, where k is a nonzero integer. In addition,
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fy(2) has a quintuple pole at z = 0. Using elementary trigonometric
identities, we find, after some calculation, that

(22.14) R(+Jok(1+D/(2nN)) = R(+/ —ak(1+D)/(2nN))
1 2 cos \/&7{

= — — — + 1.
4nk | cosh \/ock — COS \/oclc
Easier calculations yield
coth (nk)
R(ilk/N) = = — pK2
nk (e” P —1)
and
LN coth (nk)
R(+ == )
(M) = @ =)

Observe that
2 coth (nk) coth (nk)

k@ —1) | nk

(22.15) R(+ik/N) + R(£k/N) =

To calculate the residue at z = 0, write

1)t Nz (nNz)?
W& =Nt T s T

NaNz ~ 3 45 2 12

1 Nz ~ (nNZ)3 N } ﬁlezz{l 3 ﬁNZZZ . (BNZZZ)Z . } .

After some simplification, we find that

B To
1272 1807

(22.16) R(0) =

Let C denote the positively oriented rhombus with vertices + 1 and + i.
By our choice of N, there are no poles of fy on C. Applying the residue
theorem and employing (22.14)-(22.16), we find that

1 2 ok
(22.17) — ffN(z)dz - ¥ cos o/ _
2mi J T 1=k=n2N2/a k (cosh \/ock — COS V/ock)
1 1 4 coth (nk)
D VI Sl Ve e
T | =k=n2N2/a k T | k=N k(e "1)
N % 3 coth (nk) p To

TN k 1272 1807
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Next, we calculate directly the integral on the left side of (22.17). Let C;
denote the part of C in the jth quadrant, 1 <<j <<4. On C, set z = 1
—x+ix, 0<x<<l,and on C5 set z = x — 1 —ix, 0 < x < 1. Then
in either case,

) 0, 0 <x <1,
(22.18) lim fy(z) =1 .
N oo iz, Y,<x<1.
OnC,setz = —x+ (1—-x)i,0x<<l,andon C,setz = x + (x— 1),

0 << x < 1. Then in either case,

—ilz, 0 <x <y,
0, lYy<x<l1.

N-w

(22.19) lim fy(z) = {

By the choice of N, the convergence in (22.18) and (22.19) is bounded on C
as N tends to oco. Hence, by the bounded convergence theorem,

1
(22.20) lim — | fy(2)dz
Now 2T J ¢
(- 1+;)/2 —i (1-1)/2 i .
- — = —Log2.
27z . , z T
(1+i)/2 i —-1-i)/2 =1
Returning to (22.17), we examine
coth (nk 1
(22.21) , yp by 1
1=<k=N k 1-=k=n2N2 /o k
1 1 1
=4 —_— 4 2 — - — .
1é§ézv k (ean —1) 1ékZéN k 1=k 2 2N2/a k
Now [6, p. 43],
1 1
(22.22) 2 Y, - = Z —
1<k<N k 1=k=n2N2/a k

= 2{LogN +7y + O(1/N)} — { Log (n®N?*/a) +y + O (1/N?)}
y — 2logn + Log a + O (1/N).

I

Thus, letting N tend to oo in (22.17), using (22.20)-(22.22), and mul-
tiplying both sides by 7, we deduce that




° cos \/ ak ®  coth (nk)ﬁ
log2 = -+ 121 k (cosh \/&76 — COS \/;E) + k; k(eﬁkz—l)
® 1 p 7o
4 4 k; m +y——2Logn+Logoc+1—2~7E ~ 130

which is equivalent to (22.10) after some elementary manipulation.

EnTRY 23i. We have

9O

4n k

% k coth (nk) (—1)" (kx)*" ¢ (4n)

1 n=0

n |1
= ”2}—7;{595(2)4'}1},

where the error £ is nearly equal to

8

(23.1)

f

Qn)*"*tcos {3(2n+1)n/d4} ¢ (—2n—23)
2L (1) ! ’

(23.2) (=D + %
n=0

if x is small. (It is not clear whether the entry reads ¢ (2) or ¢ (—2) on
the right side of (23.1).)

As mentioned in the introduction, we have been unable to prove this
entry. Furthermore, the interpretation intended by Ramanujan is not clear.
It is surprising that a power series in x is to be approximated near x = 0
by a power series in 1/x. Perhaps when #4 is replaced by (23.2), the difference
between the left and right sides of (23.1) tends to 0 as x tends to 0. Perhaps
(23.2) is an asymptotic series for /. It seems that if (23.1) is true in any sense,
the hypotheses on ¢ must be quite severe and ¢ (x) must tend very rapidly
to 0 as x tends to 0.

It appears that (23.1) might arise from Euler’s transformation of series
and Newton’s interpolation formula. However, such considerations have
failed to establish (23.1). Possibly another transformation of series formula,
for example, like those found by S. N. Aiyar [3], combined with Newton’s
interpolation formula will lead to a proof of (23.1). Entry 23i is somewhat
reminescent of some very interesting formulae of Ramanujan on integral

transforms [31, pp. 188-193], [30] for which the proofs use the afore-
mentioned ideas.




54
ENTRY 23ii. We have
(23.3) Y Y k7' y (k) sech (nk/2) (— 1) (kx)*" ¢ (4n)
k=1 n=0

IO
-8 2
where 4 is very nearly equal to

§ (=1)"(n//2)" ¢ (—n)

x"n !

if x 1s small.

Comments similar to those made after Entry 23i can be made about
this mysterious formula as well. However, as we shall shortly see, if we
assume that the double series in (23.3) converges absolutely, then, in fact,
(23.3) is indeed true with # = 0. Of course, we are unable to make this
hypothesis about the double series in (23.1).

Proof. Assume that the double series in (23.3) converges absolutely.
Then inverting the order of summation and employing the Corollary of
Entry 14 and Entry 15, we find that

S Y k() sech (nk/2) (— 1Y (kx)*™  (4n)

(—1y'x*¢(4n) Y Kk*~1y (k) sech (nk/2) =g¢<0>,

0 k=1

which establishes (23.3) with 2 = 0.

I
DM 8

n

ENTRY 24. For z complex,

e 2" 1 1 L7
2z { cosh (2nz) — cos (2nz) } C 8nz® 4z 4z
© 1 2 n
- + 4z .
n; z* + (z+n)* ni\:l (€™ —1) (4z* +n%)

Proof. Let f (z) denote the left side above. We shall expand f by
partial fractions. The function f has a triple pole at z = 0 and simple poles
at z = +n(1+1i)/2, where n is a positive integer. By division of power
series, it is easily calculated that the principal part of fabout z = 0 is

24.1) ! L
(24. 8nz? 472 4z
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Straightforward calculations show that

1 .
R(n(1+1)/2) = Y@ 1) = — R(n(1-1/2).

Replacing n by —n above and manipulating slightly, we find that

1 1 .
R(—n(1+1)/2) = 2in @ D) + 3= R(—n(1-1)/2).
Now,
5 1 1 L 1 |
(24.2) 2inlz +n(1+1)/2+ Sz an(=02 22+ (z+n)?

After much, but routine, simplification, we get

1 1 L
(243) 7 i (32”"—1){2 — n (1+l)/2 B Z — n(l—l)/z

1 1 4nz
" z+n(1+0)2 z+n(l—i)2 ( 2w _ 1) (4z* +n*)

Using the principal parts in (24.1)-(24.3), we easily deduce the desired
result after employing an argument like that at the end of the proof of
Entry 4.

ENTRY 24i. For complex z we have

A

S —
2z2 5 224+t 2z z(2™—1)

T T

This result is just a reformulation of (1.9).

ENTRY 24ii. Let z be complex. Then

i 1

aso 22+ 2n+ 1?7

1 1 2
z(e™+1) T2z 1

A proof of Entry 24ii is easily obtained by expanding the function on
the left side above into partial fractions.

The next entry is complementary to Entry 24.
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ENTRY 25. Let z be complex. Then

e T
4z { cosh (nz) + cos (nz) } 8z

X 1 X 2n + 1
- X 2 ; — 4z 2 (Zn+1)x 4 A
no z* +(z+2n+1) =0 (e +1)(4z* +(2n +1)*)

Proof. Let f (z) denote the left side above. We expand f into partial
fractions. The function f has a simple pole at z = 0, and the principal part
about 0 is easily seen to be 7/(8z). Also, f has simple polesatz = + (2n+1)
(1+1i)/2, where n is a nonnegative integer. Routine calculations give

I
22n+1) (e ™ 1 1)
= — R(2n+1)(1—-0)2)

R(2n+1)(1+0)2) =

and

i i
202n+1) (@D 1) 2(2n+1)
= — R(—Qa+1)(1-0/2) .

The sum of the principal parts for the four poles + (2n+1) (1+17)/2 is
thus found to be

R(—Q2n+1(1+410)/2) =

1 4z(2n+1)
ZZ 1 (Z+2n+1)2 (e(2n+1)n + 1)(4z4+(2n+1)4) ‘

The theorem now readily follows.

ENTRIES 251, 11. We have

®  coth (nk) T’
25.1
(25.1) ; ~ 180

and

©  coth (nk 1977
(25.2) y ( ) _ _
& 56,700

Both (25.1) and (25.2) are special cases of the more general formula

*  coth (nk) ek B,, Byysyoo
25.3 — 92n 2n+1 —1 k+1 2k n .
@z L DT 0T Gre2—2m

k=1

k2n+ 1.
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where 7 is an odd positive integer and B; denotes the j th Bernoulli number.
Ramanujan does not state the general formula (25.3) in his Notebooks.
However, it does follow quite easily from Entry 21i. (See [12, p. 155].)
Formula (25.2) was communicated by Ramanujan in one of his letters to
Hardy [61, p. xxvi]. Entry 25i (25.1), in fact, was long ago established by
Cauchy [17, pp. 320, 361]. Cauchy does not state the general formula (25.3),
but he does give a general method for evaluating the series on the left side
of (25.3). Preece [54] has established (25.1) and Sandham [66] has proved
(25.2). The first statement of (25.3) known to the author is by Lerch [45].
Later proofs of (25.3) have been given by Watson [73], Sandham [67],
Smart [71], Sayer [68], and the author [12, p. 155], [11].

ENTRIES 25111, iv. We have
® tanh {2k+1)n/2} =°
) -5

k=0 (2k +1)° <

and

i tanh { Qk+1)=/2} 77’
= (2k +1)7 23,040 °

Both entries follow from the more general formula

(25.4) i tanh { 2k +1)n/2}

k=0 (2k+1)4n+3
— zl_lﬁs i (=1 Erk+1(0) Egpiq-2(0)
8 =0 (k+1)! (4n+1-2k)!"

where n is a nonnegative integer and E; (x) denotes the j th Euler polynomial.
Formula (25.4) cannot be found in the Notebooks. The first proof of (25.4)
was given by Phillips [53]. Later proofs have been given by Nanjundiah [52],
Sandham [67], Smart [71], Sayer [68], and the author [14, Corollary 4.10].

ENTRIES 25v, vi. We have

3 (
k=1

—1)¥*! csch (nk) n3
k3 " 360

and
— 1)**! csch (nk) 13n7
k7 453,600

bR




Both entries follow from the more general formula

Z  (=1)**1 ¢csch (nk)
(25.5) kgl PECEE
1 a2 B (V2) Byys a1 (72)

= (2m)™ k;o (=1 (2k)! (4n+4—=2k)! "~

where n is an integer and B, (x) denotes the jth Bernoulli polynomial.
Formula (25.5) is essentially due to Cauchy [17, pp. 311, 361] who gave a
somewhat less explicit formulation. Otherwise, (25.5) was first established
by Mellin [50]. Later proofs have been given by Malurkar [49], Phillips [53],
Nanjundiah [52], Sandham [67], Riesel [65], Sayer [68], and the author
[14, Corollary 3.2]. The general formula (25.5) does not appear in the
Notebooks.

ENTRIES 25vi1, vill, 1Xx. We have

> sech (nk/2) =
A ] - B~
k; 1 (k) —— .
* sech (nk/2)  =n°
S _ |
k; 1) =5 768
and
* sech (k/2) 23n°
! = .
2 1= 1,720,320

All three entries follow from the general formula

® sech (nk/2)
(25.6) kZI x (k) —}’Cmf—
_ i (E\ 4n+1 g (_1)7{ E2k E4n—-2k
4 \2 e (2k) ! (4n —2k) !’

which can be easily deduced from Entry 21ii. Here » is any integer. Entry
25vii is a simple consequence of Entry 15 and was proven by Preece [54].
Entry 25viii appeared in one of Ramanujan’s letters to Hardy [61, p. xxvi].
In addition to the proofs mentioned after Entry 21ii, proofs of (25.6) have
been given by Watson [73], Sandham [67], Riesel [65], and Sayer [68].
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ENTRY 25x. We have

O A N :
(25.7) b e —1 8 kZ k? cosh (k)

k=1 =1

dx .

96 2

572 1 Jl tan~ ! x

0 X

Proof. Let
1

z%(e*™ —1) cos (nz)

f(2) =

We shall integrate f over the positively oriented square Cy whose vertical
sides pass through + (N + %2) i, where N is a positive integer. The function
f has a triple pole at z = 0 and simple poles at z = + (2k+1)/2, where k
is a nonnegative integer, and at z = +ki, where k is a positive integer.
Routine calculations yield R (0) = 5n/12,

B 4(_1)k+1
R((2/<+1)/2) = (2k + 1)1 (BT D7 1) >
B 4(__1)k+1
R(—(2k+1)/2) = R((2k+1)/2) + m >
and
R (ki) = — R(—ki).

" 27k? cosh (nk)

Hence, applying the residue theorem and letting N tend to oo, we find that

, 1 g ® g
(25.8) 0=lim — | f(2)dz = — — ) ﬂ__
Noboo 28 T 5 k*(e™—1)
CnN
4 1 2 1 57
T m y=1 k°cosh (nk) 12

where L (s) is defined by (21.1). A comparison of (25.8) with (25.7) indicates
that it remains to show that

lt -1
(25.9) J P =L@,
o X

Integrating termwise the Maclaurin expansion
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tan ~1x (= 1)kx*
. y

x5 22dk+1

we readily deduce (25.9), and the proof is complete.

ENTRY 25xi. We have

2 1
25.10 4
( ) k; {k* + (k+1)*}(cosh {(2k +1)n} — coshn)
Lol cothn = ® tank?(mf2)
= —— 11— 4+ co — — tanh*(n :
2sinh 7 |7 § 2

Entry 25xi is in error in the Notebooks, for Ramanujan has written
sinh { 2k+1) 7} — sinh 7 instead of cosh { 2k+1)n} — coshn on the
left side of (25.10). Ramanujan communicated (25.10), with the same error,
in one of his letters to Hardy [61, p. 349]. Watson [73] established (25.10)
by contour integration. Because Watson’s proof contains a few errors, we
briefly sketch another proof by contour integration below. The calculations
in both proofs are extremely laborious.

Proof. Let
f(z) =

7 sinh 7
z{ cosh (nz) + cosh n} { cos (nz) + coshn}’

which has a simple pole at z = 0 and poles at z = i (2k+1) + 1, if k
1s an integer, and at z = 2n + 1 + i, if n is an integer. These poles are
simple except when £ = 0, —1 and n = 0, —1 when the two sets coelesce
to give double poles. Very lengthy calculations yield

n tanh? (n/2)

R(0) = ,
©) sinh 7«

R(i(2k+1) £ 1)

+ 1
= — > k # 0; —1>
{i(2k+1) £1}(cosh {(2k+ 1)} — cosh n)

R(2n+1+1i)

+ i

= , n#0, —1,
(2n+1+1i) (cosh {(2n+1)n} — cosh n)

and

R(+1+1) coth = 1
= EY T T S nhn 27 sinh 7w

e i S
P o
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Integrate f over a rectangle with vertical and horizontal sides passing
through +2N and +2Ni, respectively, where N is an integer. Apply the
residue theorem and let N tend to co to deduce (25.10).

ENTRY 25xii. We have

i) i 2k + 1
(25 o {25 + (2k+1)*/100} (71" + 1)
4689
- — T coth? (57/2) .
11,890 8

This entry again was communicated by Ramanujan in one of his letters
to Hardy [61, p. 349]. The right side of (25.11), however, had the wrong
sign on both terms. This error is also made in the Notebooks. Furthermore,
the left side of (25.11) is replaced by only the first three terms of the series
in the Notebooks, and the second term contains another misprint. It
may be of interest to determine how well the first three terms on the left
side of (25.11) approximate the right side. Joseph Muskat has kindly
calculated that

1 3 5
+
2501 (" +1) 2581 (@ +1) | 3125 +1)

= .001665694154...,

while on the other hand,

1089 T oth?(57/2) = 001665694195
90~ g o) = .

Watson [73] has given a proof of (25.11) by contour integration. It
will be shown below that Entry 25xii is a corollary of Entry 25; hence,
this is probably the method used by Ramanujan to establish (25.11).

Proof. 1In Entry 25 put z = 5i. After some simplification and rearrange-
ment, we find that

(25.12) Y G 2t ]
k=0 (P74 1){25 + (2k+1)*/100)}
- ® 1 n coth? (57/2)
—5i ), 2 - = :
k=0 2k+1)* + 102k +1)i — 50 8

A comparison of (25.12) with (25.11) indicates that it remains to show that
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(25.13) 5i Y . ! = ;ﬂ%ﬁ[}
Zo Ck+1)* +102k+1)i —50 11,890

or equivalently that

w 2k 4 1
(25.14) 50 Y + _ 408
= (k+1D* +2500 11,890

since (25.12) obviously implies that the imaginary part of the left side of
(25.13) is zero. To show (25.14), write

i 2k + 1
=0 (2k+1* + 2500
5 2 1 1
"2 ;Z@ i(2k-+])2-— 102k +1) + 50  (2k+1) + 102k +1) + 50
5 @ 1
) 2;) Qk+1)2 — 10 2k +1) + 50
| “ |
_k§;Qk+1—1®2+10mk+1—1®+5®
5 2 1 4689

2 kgo (2k+1)> — 102k +1) + 50 - 11,890
and the proof of (25.14), and hence (25.11), is complete.
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